Low-Noise Resonant Tunneling Diode Terahertz Detector

被引:2
作者
Clochiatti, Simone [1 ]
Grygoriev, Anton [1 ]
Kress, Robin [1 ]
Mutlu, Enes [1 ]
Possberg, Alexander [1 ]
Vogelsang, Florian [2 ]
van Delden, Marcel [3 ]
Pohl, Nils [2 ]
Weimann, Nils G. [1 ]
机构
[1] Univ Duisburg Essen, Fac Engn, Dept Components High Frequency Elect BHE, D-47057 Duisburg, Germany
[2] Ruhr Univ Bochum, Inst Integrated Syst, D-44801 Bochum, Germany
[3] Ruhr Univ Bochum, Inst Elect Circuits, D-44801 Bochum, Germany
关键词
Terahertz communications; Detectors; Sensitivity; Terahertz radiation; Resistance; Noise; Voltage; Schottky diodes; Frequency measurement; Resonant tunneling devices; Band structure engineering; compact THz detectors; curvature factor; direct detection; epitaxial design; harmonic balance (HB); heterostructure optimization; indium phosphide (InP); noise-equivalent power (NEP); nonequilibrium green's function (NEGF); on-wafer; quantum transport simulation; quantum tunneling; resonant tunneling diode (RTD); room-temperature operation; terahertz (THz); THz detectors; THz applications; triple-barrier RTD; voltage responsivity; zero-bias; THZ;
D O I
10.1109/TTHZ.2024.3505599
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work presents a comprehensive analysis of indium phosphide (InP) triple-barrier resonant tunneling diodes (TB-RTDs) operating as direct terahertz (THz) detectors at zero bias. Through analytical derivation, the influence of device dimensions and of current-voltage curvature on voltage responsivity and noise equivalent power (NEP) is explored, and theoretical expressions for diode sensitivity are derived. On-wafer measurements of two scaled TB-RTDs with top contact areas of 0.5 mu m(2 )and 1 mu m(2) are conducted, followed by a comparative analysis, including harmonic-balance simulation results based on a self-developed TB-RTD nonlinear model. The measurements reveal that the responsivity scales with device area, as predicted by the theory, with a peak responsivity of 2123V/W at 340GHz for the TB-RTD, and above 1200V/W across the entire WR2 band (330-500GHz) for the smaller 0.5 mu m(2) area device. The NEP values do not exceed 3.5 pW/Hz and 2pW/Hz for the 1 mu m(2) and 0.5 mu m(2) devices, respectively, with the lowest measured NEP being 1.15pW/Hz for the 0.5 mu m2 device. These sensitivity values place the TB-RTD at a level comparable with the state-of-the-art THz direct detectors operating at room temperature. The investigation offers a clear picture of the intrinsic performance of TB-RTD operating at zero bias, with a detailed overview of the on-wafer measurement setup, power characterization method, and detector figures of merit, highlighting the potential of TB-RTDs as compact, power-efficient, and ultra-sensitive direct THz detectors.
引用
收藏
页码:107 / 119
页数:13
相关论文
共 50 条
[1]   A 1 k-Pixel Video Camera for 0.7-1.1 Terahertz Imaging Applications in 65-nm CMOS [J].
Al Hadi, Richard ;
Sherry, Hani ;
Grzyb, Janusz ;
Zhao, Yan ;
Foerster, Wolfgang ;
Keller, Hans M. ;
Cathelin, Andreia ;
Kaiser, Andreas ;
Pfeiffer, Ullrich R. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2012, 47 (12) :2999-3012
[2]  
Arzi K, 2019, GER MICROW CONF, P17, DOI [10.23919/gemic.2019.8698124, 10.23919/GEMIC.2019.8698124]
[3]   Broadband Detection capability of a Triple Barrier Resonant Tunneling Diode [J].
Arzi, Khaled ;
Clochiatti, Simone ;
Mutlu, Enes ;
Kowaljow, Alexander ;
Sievert, Benedikt ;
Erni, Daniel ;
Weimann, Nils ;
Prost, Werner .
2019 SECOND INTERNATIONAL WORKSHOP ON MOBILE TERAHERTZ SYSTEMS (IWMTS), 2019,
[4]   A High-Sensitivity AlGaN/GaN HEMT Terahertz Detector With Integrated Broadband Bow-Tie Antenna [J].
Bauer, Maris ;
Raemer, Adam ;
Chevtchenko, Serguei A. ;
Osipov, Konstantin Y. ;
Cibiraite, Dovile ;
Pralgauskaite, Sandra ;
Ikamas, Kestutis ;
Lisauskas, Alvydas ;
Heinrich, Wolfgang ;
Krozer, Viktor ;
Roskos, Hartmut G. .
IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2019, 9 (04) :430-444
[5]  
Bharathi M., 2022, Terahertz Wireless Communication Components and System Technologies, P45, DOI DOI 10.1007/978-981-16-9182-910
[6]  
Brown ER, 2015, SEMICONDUCTOR TERAHERTZ TECHNOLOGY: DEVICES AND SYSTEMS AT ROOM TEMPERATURE OPERATION, P212
[7]   Resonant Tunneling Diodes High-Speed Terahertz Wireless Communications-A Review [J].
Cimbri, Davide ;
Wang, Jue ;
Al-Khalidi, Abdullah ;
Wasige, Edward .
IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2022, 12 (03) :226-244
[8]   Large-Signal Modelling of sub-THz InP Triple-Barrier Resonant Tunneling Diodes [J].
Clochiatti, S. ;
Aikawa, K. ;
Arzi, K. ;
Mutlu, E. ;
Suhara, M. ;
Weimann, N. ;
Prost, W. .
2020 THIRD INTERNATIONAL WORKSHOP ON MOBILE TERAHERTZ SYSTEMS (IWMTS), 2020,
[9]  
Clochiatti S., 2022, PROC 52 EUR MICROW C
[10]  
Clochiatti S., 2021, PROC 4 INT WORKSHOP, P15