Generalized Forgetting Recursive Least Squares: Stability and Robustness Guarantees

被引:8
作者
Lai, Brian [1 ]
Bernstein, Dennis S. [1 ]
机构
[1] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA
关键词
Asymptotic stability; Noise; Robustness; Cost function; Sufficient conditions; Symmetric matrices; Parameter estimation; Identification; recursive least squares (RLS); robustness; stability analysis; errors in variables; ERRORS-IN-VARIABLES; EXPONENTIAL CONVERGENCE; ALGORITHM; PERSISTENCY; SYSTEMS;
D O I
10.1109/TAC.2024.3394351
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work presents generalized forgetting recursive least squares (GF-RLS), a generalization of RLS that encompasses many extensions of RLS as special cases. First, sufficient conditions are presented for the 1) Lyapunov stability, 2) uniform Lyapunov stability, 3) global asymptotic stability, and 4) global uniform exponential stability of parameter estimation error in GF-RLS when estimating fixed parameters without noise. Second, robustness guarantees are derived for the estimation of time-varying parameters in the presence of measurement noise and regressor noise. These robustness guarantees are presented in terms of global uniform ultimate boundedness of the parameter estimation error. A specialization of this result gives a bound to the asymptotic bias of least squares estimators in the errors-in-variables problem. Lastly, a survey is presented to show how GF-RLS can be used to analyze various extensions of RLS from literature.
引用
收藏
页码:7646 / 7661
页数:16
相关论文
共 50 条
[41]   Robustness properties of a robust partial least squares regression method [J].
Vanden Branden, K ;
Hubert, M .
ANALYTICA CHIMICA ACTA, 2004, 515 (01) :229-241
[42]   Weighted Least Squares Regression with the Best Robustness and High Computability [J].
Zuo, Yijun ;
Zuo, Hanwen .
AXIOMS, 2024, 13 (05)
[43]   Robust and scalable distributed recursive least squares☆ [J].
Azzollini, Ilario Antonio ;
Bin, Michelangelo ;
Marconi, Lorenzo ;
Parisini, Thomas .
AUTOMATICA, 2023, 158
[44]   Identifying the parameters of ultracapacitors based on variable forgetting factor recursive least square [J].
Zhang, Bo ;
Chen, Xi ;
You, Hanwen ;
Jin, Hong ;
Peng, Hongxiang .
COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2024, 43 (06) :1220-1238
[45]   Recursive generalized extended least squares and RML algorithms for identification of bilinear systems with ARMA noise [J].
Hafezi, Zahra ;
Arefi, Mohammad Mehdi .
ISA TRANSACTIONS, 2019, 88 :50-61
[46]   Auxiliary model based recursive generalized least squares parameter estimation for Hammerstein OEAR systems [J].
Wang, Dongqing ;
Chu, Yanyun ;
Yang, Guowei ;
Ding, Feng .
MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (1-2) :309-317
[47]   Low-complexity variable forgetting factor mechanism for recursive least-squares algorithms in interference suppression applications [J].
Cai, Yunlong ;
de Lamare, Rodrigo C. .
IET COMMUNICATIONS, 2013, 7 (11) :1070-1080
[48]   Robust augmented space recursive least-constrained-squares algorithms [J].
Zhang, Qiangqiang ;
Wang, Shiyuan ;
Lin, Dongyuan ;
Zheng, Yunfei ;
Tse, Chi K. .
SIGNAL PROCESSING, 2024, 219
[49]   Kernel Recursive Least Squares With Multiple Feedback and Its Convergence Analysis [J].
Wang, Shiyuan ;
Wang, Wanli ;
Duan, Shukai ;
Wang, Lidan .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2017, 64 (10) :1237-1241
[50]   Unbiased Recursive Least-Squares Estimation Utilizing Dichotomous Coordinate-Descent Iterations [J].
Arablouei, Reza ;
Dogancay, Kutluyil ;
Adali, Tulay .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (11) :2973-2983