Data-Driven Adaptive Unscented Kalman Filter for Time-Varying Inertia and Damping Estimation of Utility-Scale IBRs Considering Current Limiter

被引:4
作者
Tan, Bendong [1 ]
Zhao, Junbo [1 ]
机构
[1] Univ Connecticut, Dept Elect & Comp Engn, Storrs, CT 06269 USA
基金
美国国家科学基金会;
关键词
Inertia estimation; virtual inertia; variational Bayesian estimation; unscented Kalman filter; dynamic estimation; inverter-based resources; power system dynamics; POWER-SYSTEM INERTIA;
D O I
10.1109/TPWRS.2024.3379956
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Grid-forming inverters, such as the virtual synchronous generator (VSG), can emulate constant or time-varying inertia to mitigate frequency stability issues. This paper proposes a data-driven variational Bayesian adaptive unscented Kalman filter (VBAUKF) to estimate the VSG-based inverter inertia and damping factor using its terminal measurements. By adopting the Thevenin equivalent idea, the virtual frequency of VSG is estimated first. Utilizing the estimated virtual frequency and considering the effects of the inverter current limiter, the time-varying inertia and damping factor estimation problem is reformulated into the state-space model-based dynamic state estimation framework. The measurements include the obtained virtual frequency, inverter terminal real, and reactive power while the unknowns are inverter inertia, damping factor, internal virtual rotor speed, and angle. To this end, an innovative VBAUKF is proposed with the advantages of dealing with unknown and time-varying models and measurement uncertainties. Numerical results on the modified IEEE 39-bus system and IEEE 118-bus power system demonstrate that the proposed estimator significantly outperforms other state-of-the-art approaches under various scenarios.
引用
收藏
页码:7331 / 7345
页数:15
相关论文
共 37 条
  • [1] [Anonymous], 2014, IEEE STANDARD SYNCHR, P1, DOI [DOI 10.1109/IEEESTD.2011.6111219, 10.1109/IEEESTD.2011.6111219, 10.1109/IEEESTD.2014.6804630]
  • [2] Cubature Kalman Filters
    Arasaratnam, Ienkaran
    Haykin, Simon
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (06) : 1254 - 1269
  • [3] Inertia Estimation of the GB Power System Using Synchrophasor Measurements
    Ashton, Phillip M.
    Saunders, Christopher S.
    Taylor, Gareth A.
    Carter, Alex M.
    Bradley, Martin E.
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2015, 30 (02) : 701 - 709
  • [4] Switching Markov Gaussian Models for Dynamic Power System Inertia Estimation
    Cao, Xue
    Stephen, Bruce
    Abdulhadi, Ibrahim F.
    Booth, Campbell D.
    Burt, Graeme M.
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2016, 31 (05) : 3394 - 3403
  • [5] A comprehensive review of virtual synchronous generator
    Cheema, Khalid Mehmood
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2020, 120
  • [6] Adaptive Virtual Synchronous Generator Considering Converter and Storage Capacity Limits
    Chen, Junru
    Liu, Muyang
    Milano, Federico
    O'Donnell, Terence
    [J]. CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2022, 8 (02): : 580 - 590
  • [7] Chen M, 2020, J MOD POWER SYST CLE, V8, P399, DOI [10.35833/MPCE.2019.000592, 10.35833/mpce.2019.000592]
  • [8] Closas P, 2015, 2015 IEEE 6TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), P485, DOI 10.1109/CAMSAP.2015.7383842
  • [9] GmbH m., 2022, DIgSILENT PowerFactory Release 2022
  • [10] Estimation of Parameters of a Dynamic Generator Model From Modal PMU Measurements
    Gorbunov, Andrey
    Dymarsky, Anatoly
    Bialek, Janusz
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2020, 35 (01) : 53 - 62