Advancements and Challenges in Nanoscale Zero-Valent Iron-Activated Persulfate Technology for the Removal of Endocrine-Disrupting Chemicals

被引:0
|
作者
Liang, Dong [1 ]
Zeng, Guoming [1 ,2 ,3 ]
Lei, Xiaoling [1 ]
Sun, Da [4 ,5 ]
机构
[1] Chongqing Acad Sci & Technol, Chongqing 401123, Peoples R China
[2] Chongqing Univ Sci & Technol, Sch Civil & Hydraul Engn, Chongqing 401331, Peoples R China
[3] Chongqing Jiaotong Univ, Sch Civil Engn, Chongqing 400074, Peoples R China
[4] Wenzhou Univ, Coll Life & Environm Sci, Natl & Local Joint Engn Res Ctr Ecol Treatment Tec, Wenzhou 325035, Peoples R China
[5] Wenzhou Univ, Coll Life & Environm Sci, Zhejiang Prov Key Lab Water Environm & Marine Biol, Wenzhou 325035, Peoples R China
基金
中国国家自然科学基金;
关键词
endocrine-disrupting chemicals; nZVI; advanced oxidation techniques; persulphate; toxicity; POLYBROMINATED DIPHENYL ETHERS; BISPHENOL-A; DEGRADATION; WATER; REMEDIATION; NZVI; DEBROMINATION; PRODUCTS; KINETICS; TETRACYCLINE;
D O I
10.3390/toxics12110814
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Endocrine-disrupting chemicals are a new class of pollutants that can affect hormonal metabolic processes in animals and humans. They can enter the aquatic environment through various pathways and gradually become enriched, thus posing a serious threat to the endocrine and physiological systems of both animals and humans. Nano zero-valent iron has promising applications in endocrine disruptor removal due to its excellent reducing properties and high specific surface area. However, given the dispersed focus and fragmented results of current studies, a comprehensive review is still lacking. In this paper, it was analyzed that the types of endocrine disruptors and their emission pathways reveal the sources of these compounds. Then, the main technologies currently used for endocrine disruptor treatment are introduced, covering physical, chemical, and biological treatment methods, with a special focus on persulfate oxidation among advanced oxidation technologies. Also, the paper summarizes the various activation methods of persulfate oxidation technology and proposes the nZVI-activated persulfate technology as the most promising means of treatment. In addition, this paper reviews the research progress of different modification methods of nZVI in activating persulfate for the removal of EDCs. Finally, the discussion includes recycling studies of nZVI/PS technology and emphasizes the urgency and importance of endocrine disruptor treatment. The review of this paper provides further scientific basis and technical support for nZVI/PS technology in the field of endocrine disruptor management.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Degradation of Norfloxacin in an Aqueous Solution by the Nanoscale Zero-Valent Iron-Activated Persulfate Process
    Zhang, Yanchang
    Zhao, Lin
    Yang, Yongkui
    Sun, Peizhe
    JOURNAL OF NANOMATERIALS, 2020, 2020
  • [2] Zero-valent iron-activated persulfate oxidation of a commercial alkyl phenol polyethoxylate
    Temiz, Kubra
    Olmez-Hanci, Tugba
    Arslan-Alaton, Idil
    ENVIRONMENTAL TECHNOLOGY, 2016, 37 (14) : 1757 - 1767
  • [3] Removal of phenol from aqueous solution using persulfate activated with nanoscale zero-valent iron
    Tunc, Muslun Sara
    Tepe, Ozlem
    DESALINATION AND WATER TREATMENT, 2017, 74 : 269 - 277
  • [4] Enhanced dewaterability of sewage sludge with zero-valent iron-activated persulfate oxidation system
    Hu, Lingling
    Liao, Yu
    He, Chun
    Pan, Wenqi
    Liu, Shangkun
    Yang, Yichang
    Li, Shuzhen
    Sun, Lianpeng
    WATER SCIENCE AND TECHNOLOGY, 2015, 72 (02) : 245 - 251
  • [5] Kinetics of zero-valent iron-activated persulfate for methylparaben degradation and the promotion of Cl-
    Li, Xinxin
    Song, Chuang
    Sun, Beibei
    Gao, Jingsi
    Liu, Yanping
    Zhu, Jia
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2022, 321
  • [6] Comparison between UVA- and zero-valent iron-activated persulfate processes for degrading propylparaben
    Priscila H. Palharim
    Cátia A. L. Graça
    Antonio C. S. C. Teixeira
    Environmental Science and Pollution Research, 2020, 27 : 22214 - 22224
  • [7] Comparison between UVA- and zero-valent iron-activated persulfate processes for degrading propylparaben
    Palharim, Priscila H.
    Graca, Catia A. L.
    Teixeira, Antonio C. S. C.
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2020, 27 (18) : 22214 - 22224
  • [8] Degradation of Nitrobenzene by Persulfate Activated with Zero-valent Iron
    Chung, T. V.
    Anh, T. Q.
    Phung, D. Q.
    Luong, T. D.
    ASIAN JOURNAL OF CHEMISTRY, 2012, 24 (03) : 1371 - 1374
  • [9] Insights into enhanced removal of TCE utilizing sulfide-modified nanoscale zero-valent iron activated persulfate
    Dong, Haoran
    Hou, Kunjie
    Qiao, Weiwei
    Cheng, Yujun
    Zhang, Lihua
    Wang, Bin
    Li, Long
    Wang, Yaoyao
    Ning, Qin
    Zeng, Guangming
    CHEMICAL ENGINEERING JOURNAL, 2019, 359 : 1046 - 1055
  • [10] Insights into endocrine-disrupting Bisphenol-A adsorption from pharmaceutical effluent by chitosan immobilized nanoscale zero-valent iron nanoparticles
    Dehghani, Mohammad Hadi
    Karri, Rama Rao
    Alimohammadi, Mahmood
    Nazmara, Shahrokh
    Zarei, Ahmad
    Saeedi, Zhyar
    JOURNAL OF MOLECULAR LIQUIDS, 2020, 311