The chromosome-scale assembly of the Salvia plebeia genome provides insight into the biosynthesis and regulation of rosmarinic acid

被引:0
|
作者
Dai, Yiqun [1 ,2 ]
He, Mengqian [1 ]
Liu, Hui [3 ]
Zeng, Huihui [1 ]
Wang, Kaixuan [1 ]
Wang, Rui [4 ]
Ma, Xiaojing [5 ]
Zhu, Yan [1 ]
Xie, Guoyong [1 ]
Zhao, Yucheng [1 ,6 ]
Qin, Minjian [1 ]
机构
[1] China Pharmaceut Univ, Sch Tradit Chinese Pharm, Dept Resources Sci Tradit Chinese Med, State Key Lab Nat Med, Nanjing, Peoples R China
[2] Bengbu Med Univ, Sch Pharm, Bengbu, Peoples R China
[3] Yangzhou Ctr Food & Drug Control, Yangzhou, Peoples R China
[4] Yunnan Yunke Characterist Plant Extract Lab Co Ltd, Kunming, Peoples R China
[5] China Acad Chinese Med Sci, Natl Resource Ctr Chinese Mat Med, State Key Lab Qual Ensurance & Sustainable Use Dao, Beijing, Peoples R China
[6] Shihezi Univ, Inst Safflower Ind Res, Key Lab Xinjiang Phytomedicine Resource & Utilizat, Minist Educ,Sch Pharm, Shihezi, Peoples R China
关键词
biosynthesis; CYP98A; genome assembly; rosmarinic acid; Salvia plebeia; TANSHINONES; ANNOTATION; ALIGNMENT; PATHWAYS; REVEALS; ERROR;
D O I
10.1111/pbi.14601
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Salvia plebeia is an important traditional Chinese medicinal herb, with flavonoids and phenolic acids as its primary bioactive components. However, the absence of a reference genome hinders our understanding of genetic basis underlying the synthesis of these components. Here, we present a high-quality, chromosome-scale genome assembly of S. plebeia, spanning 1.22 Gb, with a contig N50 of 91.72 Mb and 36 861 annotated protein-coding genes. Leveraging the genome data, we identified four catalytic enzymes-one rosmarinic acid synthase (RAS) and three cytochrome P450 monooxygenases (CYP450s) -in S. plebeia, which are involved in rosmarinic acid biosynthesis. We demonstrate that SpRAS catalyses the conjugation of various acyl donors and acceptors, resulting in the formation of rosmarinic acid and its precursor compounds. SpCYP98A75, SpCYP98A77 and SpCYP98A78 catalyse the formation of rosmarinic acid from its precursors at either the C-3 or the C-3 ' position. Notably, SpCYP98A75 exhibited a stronger hydroxylation capacity at the C-3 ' position, whereas SpCYP98A77 and SpCYP98A78 demonstrate greater hydroxylation efficiency at the C-3 position. Furthermore, SpCYP98A75 hydroxylated both the C-3 and C-3 ' positions simultaneously, promoting the conversion of 4-coumaroyl-4 '-hydroxyphenyllactic acid to rosmarinic acid. Next, using a hairy root genetic transformation system for S. plebeia, we identified a basic helix-loop-helix protein type transcription factor, SpbHLH54, which positively regulates the biosynthesis of rosmarinic acid and homoplantaginin in S. plebeia. These findings provide a valuable genomic resource for elucidating the mechanisms of rosmarinic acid biosynthesis and its regulation and improve the understanding of evolutionary patterns within the Lamiaceae family.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] A draft chromosome-scale genome assembly of a commercial sugarcane
    Shearman, Jeremy R.
    Pootakham, Wirulda
    Sonthirod, Chutima
    Naktang, Chaiwat
    Yoocha, Thippawan
    Sangsrakru, Duangjai
    Jomchai, Nukoon
    Tongsima, Sissades
    Piriyapongsa, Jittima
    Ngamphiw, Chumpol
    Wanasen, Nanchaya
    Ukoskit, Kittipat
    Punpee, Prapat
    Klomsa-ard, Peeraya
    Sriroth, Klanarong
    Zhang, Jisen
    Zhang, Xingtan
    Ming, Ray
    Tragoonrung, Somvong
    Tangphatsornruang, Sithichoke
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [32] Chromosome-scale genome assembly and annotation of Xenocypris argentea
    Wu, Yidi
    Sha, Hang
    Liang, Hongwei
    SCIENTIFIC DATA, 2025, 12 (01)
  • [33] A chromosome level reference genome of Diviner's sage (Salvia divinorum) provides insight into salvinorin A biosynthesis
    Ford, Scott A.
    Ness, Rob W.
    Kwon, Moonhyuk
    Ro, Dae-Kyun
    Phillips, Michael A.
    BMC PLANT BIOLOGY, 2024, 24 (01):
  • [34] Chromosome-scale assembly and annotation of the perennial ryegrass genome
    Nagy, Istvan
    Veeckman, Elisabeth
    Liu, Chang
    Van Bel, Michiel
    Vandepoele, Klaas
    Jensen, Christian Sig
    Ruttink, Tom
    Asp, Torben
    BMC GENOMICS, 2022, 23 (01)
  • [35] Chromosome-scale assembly of the African yam bean genome
    Waweru, Bernice
    Njaci, Isaac
    Paliwal, Rajneesh
    Maranga, Mary
    Muli, Collins
    Murungi, Edwin
    Kaimenyi, Davies
    Lyimo, Beatus
    Nigussie, Helen
    Ahadi, Bwihangane Birindwa
    Assefa, Ermias
    Ishag, Hassan
    Olomitutu, Oluwaseyi
    Abberton, Michael
    Darby, Christopher
    Uauy, Cristobal
    Yao, Nasser
    Adewale, Daniel
    Emmrich, Peter
    Entfellner, Jean-Baka Domelevo
    Shorinola, Oluwaseyi
    SCIENTIFIC DATA, 2024, 11 (01)
  • [36] The Chromosome-Scale Genome of Magnolia sieboldii K. Koch Provides Insight Into the Evolutionary Position of Magnoliids and Seed Germination
    Lu, Xiujun
    Mei, Mei
    Liu, Lin
    Xu, Xin
    Ai, Wanfeng
    MOLECULAR ECOLOGY RESOURCES, 2025, 25 (01)
  • [37] Chromosome-scale genome assembly and annotation of Cotoneaster glaucophyllus
    Meng, Kaikai
    Liao, Wenbo
    Wei, Shaolong
    Chen, Sufang
    Li, Mingwan
    Ma, Yongpeng
    Fan, Qiang
    SCIENTIFIC DATA, 2024, 11 (01)
  • [38] De novo assembly of a chromosome-scale reference genome for the northern flicker Colaptes auratus
    Hruska, Jack P.
    Manthey, Joseph D.
    G3-GENES GENOMES GENETICS, 2021, 11 (01):
  • [39] The chromosome-scale genome provides insights into pigmentation in Acer rubrum
    Lu, Xiaoyu
    Chen, Zhu
    Liao, Buyan
    Han, Guomin
    Shi, Dan
    Li, Qianzhong
    Ma, Qiuyue
    Zhu, Lu
    Zhu, Zhiyong
    Luo, Xumei
    Fu, Songling
    Ren, Jie
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2022, 186 : 322 - 333
  • [40] Chromosome-scale assembly and analysis of biomass crop Miscanthus lutarioriparius genome
    Miao, Jiashun
    Feng, Qi
    Li, Yan
    Zhao, Qiang
    Zhou, Congcong
    Lu, Hengyun
    Fan, Danlin
    Yan, Juan
    Lu, Yiqi
    Tian, Qilin
    Li, Wenjun
    Weng, Qijun
    Zhang, Lei
    Zhao, Yan
    Huang, Tao
    Li, Laigeng
    Huang, Xuehui
    Sang, Tao
    Han, Bin
    NATURE COMMUNICATIONS, 2021, 12 (01)