On the Existence of an Evasion Strategy in a Linear Differential Game with Integral Constraints

被引:0
作者
Pansera, Bruno Antonio [1 ,2 ]
Ibragimov, Gafurjan [3 ,4 ]
Luckraz, Shravan [5 ,6 ]
机构
[1] Univ Mediterranea Reggio Calabria, Dept Law Econ & Human Sci, Via Univ 25, I-89124 Reggio Di Calabria, Italy
[2] Univ Mediterranea Reggio Calabria, Decis Lab, Via Univ 25, I-89124 Reggio Di Calabria, Italy
[3] Uzbek Acad Sci, VI Romanovskiy Inst Math, Tashkent 100174, Uzbekistan
[4] Tashkent State Univ Econ, Dept Econometr, Tashkent 100066, Uzbekistan
[5] Univ Nottingham Ningbo China, Sch Econ, Ningbo, Peoples R China
[6] Univ Nottingham Ningbo China, CeDEx China, Ningbo, Peoples R China
关键词
Differential game theory; Pursuit-evasion; Linear differential equations; PURSUERS;
D O I
10.1007/s13235-024-00613-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct an evasion strategy in a general evasion differential game, played on the Euclidean space, with one evader and any finite number of pursuers where the dynamics of the objects are given by a system of linear differential equations. Our construction of the evasion strategy is based on the ai-tau i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_i - \tau _i$$\end{document} method. We show that if the evader can successfully implement this strategy, then it can win the game against all possible strategy choices of the pursuers.
引用
收藏
页数:16
相关论文
共 14 条
[11]  
Nikolskii MS., 1972, Differentsialnie Uravneniya, V8, P964
[12]  
Nikolskii MS., 1969, Controlled Systems IM, IK, SO AN SSSR, V2, P49
[13]  
Petrosyan L. A., 1993, World Scientific Publ. Series on optimization
[14]  
Satimov NYu., 1984, Dif. Uravneniya, V20, P1388