LightYOLO: Lightweight model based on YOLOv8n for defect detection of ultrasonically welded wire terminations

被引:0
|
作者
Xu, Jianshu [1 ,2 ]
Zhao, Lun [1 ,4 ]
Ren, Yu [1 ,3 ]
Li, Zhigang [2 ]
Abbas, Zeshan [1 ]
Zhang, Lan [1 ]
Islam, Shafiqul [4 ]
机构
[1] Yunnan Open Univ, Sch Mech & Elect Engn, Kunming 650223, Yunnan, Peoples R China
[2] Univ Sci & Technol Liaoning, Sch Elect & Informat Engn, Anshan 114051, Peoples R China
[3] Shenzhen Univ, Sch Biomed Engn, Shenzhen 518060, Peoples R China
[4] Blekinge Inst Technol, Dept Mech Engn, S-37179 Karlskrona, Sweden
来源
ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH | 2024年 / 60卷
关键词
Ultrasonic metal welding; Deep learning; Object detection; Lightweight;
D O I
10.1016/j.jestch.2024.101896
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Defect inspection of the surface in ultrasonically welded wire terminations is an important inspection procedure to ensure welding quality. However, the detection task of ultrasonic welding defects based on deep learning still faces the challenges of low detection accuracy and slow inference speed. Therefore, to solve the above problems, we propose a fast and effective lightweight detection model based on You Only Look Once v8 (YOLOv8n), named LightYOLO. Specifically, first, to achieve fast feature extraction, a Two-Convolution module with FasterNet block and Efficient multi-scale attention (CTFE) structures is introduced in the backbone network. Secondly, Group-Shuffle Convolution (GSConv) is used to construct the feature fusion structure of the neck, which enhances the fusion efficiency of multi-level features. Finally, an auxiliary head training method is introduced to extract shallow details of the network. To verify the effectiveness of the proposed method, we constructed a surface defect data set of ultrasonic welding wire terminals and conducted a series of experiments. The results of experiments show that the precision of LightYOLO is 93.4%, which is 3.5% higher than YOLOv8n(89.9%). In addition, the model size was reduced to 1/2 of the baseline model. LightYOLO shows the potential for rapid detection on edge computing devices. The source code and dataset for our project is accessible at https://github.com/JianshuXu/LightYOLO.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Fabric Defect Detection Based on Improved Lightweight YOLOv8n
    Ma, Shuangbao
    Liu, Yuna
    Zhang, Yapeng
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [2] RDB-YOLOv8n: Insulator defect detection based on improved lightweight YOLOv8n model
    Jiang, Yong
    Wang, Shuai
    Cao, Weifeng
    Liang, Wanyong
    Shi, Jun
    Zhou, Lintao
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (05)
  • [3] Application of lightweight YOLOv8n networks for insulator defect detection
    Ma, Fulin
    Gao, Zhengzhong
    Chai, Xinbin
    2024 3RD INTERNATIONAL CONFERENCE ON ROBOTICS, ARTIFICIAL INTELLIGENCE AND INTELLIGENT CONTROL, RAIIC 2024, 2024, : 198 - 201
  • [4] Detection of Traffic Signs Based on Lightweight YOLOv8n
    Liu, Shihong
    Li, Shiwei
    2024 5TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATION, ICCEA 2024, 2024, : 1200 - 1204
  • [5] TBF-YOLOv8n: A Lightweight Tea Bud Detection Model Based on YOLOv8n Improvements
    Fang, Wenhui
    Chen, Weizhen
    SENSORS, 2025, 25 (02)
  • [6] PCB Surface Defect Detection based on YOLOv8n
    You, Rui
    Wang, Zhifeng
    IAENG International Journal of Computer Science, 2024, 51 (12) : 2017 - 2025
  • [7] Improved YOLOv8n for Lightweight Ship Detection
    Gao, Zhiguang
    Yu, Xiaoyan
    Rong, Xianwei
    Wang, Wenqi
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (10)
  • [8] A lightweight weed detection model for cotton fields based on an improved YOLOv8n
    Wang, Jun
    Qi, Zhengyuan
    Wang, Yanlong
    Liu, Yanyang
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [9] Improved YOLOv8n Lightweight Honeycomb Ceramic Defect- Detection Algorithm
    Hu, Haining
    Huang, Leiyang
    Yang, Honggang
    Chen, Yunxia
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (22)
  • [10] A Lightweight Model of Underwater Object Detection Based on YOLOv8n for an Edge Computing Platform
    Fan, Yibing
    Zhang, Lanyong
    Li, Peng
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (05)