Substitutional doping of 2D transition metal dichalcogenides for device applications: Current status, challenges and prospects

被引:1
|
作者
Kumar, Rajeev [1 ]
Shringi, Amit Kumar [1 ]
Wood, Hannah Jane [2 ]
Asuo, Ivy M. [3 ]
Oturak, Seda [3 ]
Sanchez, David Emanuel [3 ]
Sharma, Tata Sanjay Kanna [4 ]
Chaurasiya, Rajneesh [5 ]
Mishra, Avanish [6 ]
Choi, Won Mook [4 ]
Doumon, Nutifafa Y. [3 ]
Dabo, Ismaila [3 ]
Terrones, Mauricio [2 ]
Yan, Fei [1 ]
机构
[1] North Carolina Cent Univ, Dept Chem & Biochem, Durham, NC 27707 USA
[2] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[3] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[4] Univ Ulsan, Dept Chem Engn, Ulsan 44610, South Korea
[5] Amrita Vishwa Vidyapeetham, Amrita Sch Engn, Dept Elect & Commun Engn, Chennai 601103, India
[6] Los Alamos Natl Lab, Theoret Div, Phys & Chem Mat Grp, Los Alamos, NM 87545 USA
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
Substitutional doping; Transition metal dichalcogenides; Density functional theory; Electronics; Sensors; Energy; Device; DER-WAALS HETEROSTRUCTURES; MONOLAYER MOS2; HYDROGEN EVOLUTION; ELECTRON-TRANSPORT; PHOTOVOLTAIC RESPONSE; QUANTUM COMPUTATION; LAYERED MATERIALS; HIGHLY EFFICIENT; PHOTON EMITTERS; SINGLE SPINS;
D O I
10.1016/j.mser.2025.100946
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have emerged as a class of materials with exceptional electronic, optical, and mechanical properties, making them highly tunable for diverse applications in nanoelectronics, optoelectronics, and catalysis. This review focuses on substitutional doping of TMDs, a key strategy to tailor their properties and enhance device performance, with a focus on its applications over the past five years (2019-2024). We delve into both theoretical and experimental doping approaches, including established methods like chemical vapor transport (CVT) and chemical vapor deposition (CVD) alongside liquid phase exfoliation (LPE) and post-synthesis treatments. Advanced growth techniques are also explored. Challenges like dopant uniformity, concentration control, and stability are addressed. The influence of various dopants on the electronic band structure, carrier concentration, and defect engineering is analyzed in detail. We further explore recent advancements in utilizing doped TMDs for field-effect transistors (FETs), photodetectors, sensors, photovoltaics, optoelectronic devices, energy storage and conversion, and even quantum computers. By examining both the potential and limitations of substitutional doping, this review aims to propel future research and technological advancements in this exciting field.
引用
收藏
页数:34
相关论文
共 50 条
  • [31] 2D transition metal dichalcogenides for neuromorphic vision system
    Kaoqi Zhou
    Jie Jiang
    Liming Ding
    Journal of Semiconductors, 2021, (09) : 11 - 13
  • [32] 2D nanomaterials: beyond graphene and transition metal dichalcogenides
    Zhang, Hua
    Cheng, Hui-Ming
    Ye, Peide
    CHEMICAL SOCIETY REVIEWS, 2018, 47 (16) : 6009 - 6012
  • [33] The Defects Genome of 2D Janus Transition Metal Dichalcogenides
    Sayyad, Mohammed
    Kopaczek, Jan
    Gilardoni, Carmem M.
    Chen, Weiru
    Xiong, Yihuang
    Yang, Shize
    Watanabe, Kenji
    Taniguchi, Takashi
    Kudrawiec, Robert
    Hautier, Geoffroy
    Atatüre, Mete
    Tongay, Sefaattin
    arXiv,
  • [34] Controlled Synthesis and Accurate Doping of Wafer-Scale 2D Semiconducting Transition Metal Dichalcogenides
    Li, Xiaohui
    Yang, Junbo
    Sun, Hang
    Huang, Ling
    Li, Hui
    Shi, Jianping
    ADVANCED MATERIALS, 2023,
  • [35] 2D transition metal dichalcogenides for neuromorphic vision system
    Kaoqi Zhou
    Jie Jiang
    Liming Ding
    Journal of Semiconductors, 2021, 42 (09) : 11 - 13
  • [36] Optimization of Absorption in Patterned 2D Transition Metal Dichalcogenides
    Khan, Md Istiak
    Ahsan, Shafquat
    Mahmood, Zahid Hasan
    2018 JOINT 7TH INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV) AND 2018 2ND INTERNATIONAL CONFERENCE ON IMAGING, VISION & PATTERN RECOGNITION (ICIVPR), 2018, : 245 - 249
  • [37] Structural and electronic phases of 2D transition metal dichalcogenides
    Yazyev, Oleg
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [38] 2D transition metal dichalcogenides for efficient hydrogen generation
    Bora, Priyakshi
    Kumar, Suraj
    Sinha, Dipak
    MATERIALS TODAY SUSTAINABILITY, 2024, 27
  • [39] Chemically Functionalized 2D Transition Metal Dichalcogenides for Sensors
    Acosta, Selene
    Quintana, Mildred
    SENSORS, 2024, 24 (06)
  • [40] A Review on the Current Progress and Challenges of 2D Layered Transition Metal Dichalcogenides as Li/Na-ion Battery Anodes
    Sahoo, Ramkrishna
    Singh, Monika
    Rao, Tata Narasinga
    CHEMELECTROCHEM, 2021, 8 (13) : 2358 - 2396