Deep learning and machine learning approaches for data-driven risk management and decision support in precision agriculture

被引:0
|
作者
Mikram, Mounia [1 ]
Moujahdi, Chouaib [2 ]
Rhanoui, Maryem [1 ]
机构
[1] LYRICA Lab, Sch Informat Sci, Rabat, Morocco
[2] Mohammed V Univ Rabat, Sci Inst, Rabat, Morocco
关键词
deep learning; precision agriculture; risk management; farming; risk mitigation strategies; smart agriculture;
D O I
10.1504/IJSAMI.2025.145317
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Modern agriculture grapples with challenges such as unpredictable weather, biosecurity threats, market volatility, evolving regulations, and farmer health concerns. Effectively addressing these issues while maintaining sustainability demands informed decision-making. Data-driven technologies, especially deep learning (DL), emerge as crucial solutions. This study introduces a sustainable multivariate risk management system for precision agriculture, encompassing plant disease detection, weed detection, fire and smoke detection, and crop recommendation modules. Empowering farmers with tools to navigate risks and enhance operational efficiency, the system leverages DL techniques to uncover correlations among diverse risk factors. Enabling well-informed decisions on risk mitigation, this innovative system has the potential to revolutionise precision agriculture, fostering sustainability and profitability. Insights from the study set a benchmark for adopting data-driven, sustainable practices in smart agriculture. Farmers can utilise the system to conduct informed assessments, proactively mitigate crop damage, and redefine their approach to modern agriculture, ensuring improved yields and enhanced monitoring.
引用
收藏
页码:226 / 247
页数:23
相关论文
共 50 条
  • [31] A Data-Driven Approach for Grid Synchronization Based on Deep Learning
    Miranbeigi, Mohammadreza
    Kandula, Prasad
    Divan, Deepak
    2021 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2021, : 2985 - 2991
  • [32] Data-Driven Impulse Response Regularization via Deep Learning
    Andersson, Carl
    Wahlstrom, Niklas
    Schon, Thomas B.
    IFAC PAPERSONLINE, 2018, 51 (15): : 1 - 6
  • [33] Data-Driven Nonlinear Modal Analysis: A Deep Learning Approach
    Li, Shanwu
    Yang, Yongchao
    NONLINEAR STRUCTURES & SYSTEMS, VOL 1, 2023, : 229 - 231
  • [34] Data-Driven Intelligent Efficient Synaptic Storage for Deep Learning
    Edstrom, Jonathon
    Gong, Yifu
    Chen, Dongliang
    Wang, Jinhui
    Gong, Na
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2017, 64 (12) : 1412 - 1416
  • [35] A Deep Learning Model for Data-Driven Discovery of Functional Connectivity
    Mahmood, Usman
    Fu, Zening
    Calhoun, Vince D.
    Plis, Sergey
    ALGORITHMS, 2021, 14 (03)
  • [36] Machine learning methods for precision agriculture with UAV imagery: a review
    Shahi, Tej Bahadur
    Xu, Cheng-Yuan
    Neupane, Arjun
    Guo, William
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (12): : 4277 - 4317
  • [37] A survey of unmanned aerial vehicles and deep learning in precision agriculture
    Wang, Dashuai
    Zhao, Minghu
    Li, Zhuolin
    Xu, Sheng
    Wu, Xiaohu
    Ma, Xuan
    Liu, Xiaoguang
    EUROPEAN JOURNAL OF AGRONOMY, 2025, 164
  • [38] Evaluation of Machine Learning Approaches for Precision Farming in Smart Agriculture System: A Comprehensive Review
    Mohyuddin, Ghulam
    Khan, Muhammad Adnan
    Haseeb, Abdul
    Mahpara, Shahzadi
    Waseem, Muhammad
    Saleh, Ahmed Mohammed
    IEEE ACCESS, 2024, 12 : 60155 - 60184
  • [39] Transforming Agriculture: A Synergistic Approach Integrating Topology with Artificial Intelligence and Machine Learning for Sustainable and Data-Driven Practice
    Sriram, K. P.
    Sujatha, P. Kola
    Athinarayanan, S.
    Kanimozhi, G.
    Joel, M. Robinson
    2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE COMPUTING AND SMART SYSTEMS, ICSCSS 2024, 2024, : 1350 - 1354
  • [40] Precision Agriculture Using Soil Sensor Driven Machine Learning for Smart Strawberry Production
    Elashmawy, Rania
    Uysal, Ismail
    SENSORS, 2023, 23 (04)