Modern agriculture grapples with challenges such as unpredictable weather, biosecurity threats, market volatility, evolving regulations, and farmer health concerns. Effectively addressing these issues while maintaining sustainability demands informed decision-making. Data-driven technologies, especially deep learning (DL), emerge as crucial solutions. This study introduces a sustainable multivariate risk management system for precision agriculture, encompassing plant disease detection, weed detection, fire and smoke detection, and crop recommendation modules. Empowering farmers with tools to navigate risks and enhance operational efficiency, the system leverages DL techniques to uncover correlations among diverse risk factors. Enabling well-informed decisions on risk mitigation, this innovative system has the potential to revolutionise precision agriculture, fostering sustainability and profitability. Insights from the study set a benchmark for adopting data-driven, sustainable practices in smart agriculture. Farmers can utilise the system to conduct informed assessments, proactively mitigate crop damage, and redefine their approach to modern agriculture, ensuring improved yields and enhanced monitoring.