Revisiting Structural and Electromechanical Properties of the Lead-free (K,Na)NbO3 High-Piezoelectric Material

被引:0
作者
Bellaiche, Laurent [1 ,2 ,4 ]
Yang, Yali [5 ]
Paillard, Charles [1 ,2 ,3 ]
机构
[1] Univ Arkansas, Smart Ferro Mat Ctr, Phys Dept, Fayetteville, AR 72701 USA
[2] Univ Arkansas, Inst Nanosci & Engn, Fayetteville, AR 72701 USA
[3] Univ Paris Saclay, Cent Supelec, UMR CNRS 8580, Lab Struct Proprietes & Modelisat Solides, F-91190 Gif Sur Yvette, France
[4] Tel Aviv Univ, Dept Mat Sci & Engn, Ramat Aviv, IL-6997801 Tel Aviv, Israel
[5] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
(K; Na)NbO3; high piezoelectricity; effective Hamiltonian; phase transition; nanotwinstates; FINITE-TEMPERATURE PROPERTIES; PHASE-TRANSITIONS; FERROELECTRICITY; PEROVSKITES; BEHAVIOR;
D O I
10.1021/acsami.5c03052
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Having lead-free systems with excellent piezoelectric responses is crucial to the development of environmentally friendly electromechanical applications. In this work, we build an effective Hamiltonian model to explore the promising (KxNa1-x)NbO3 system, whose rich phase diagram near x = 50% remains poorly understood meanwhile exhibiting a colossal effective piezoelectric response. Thanks to the numerical implementation of this effective Hamiltonian scheme into a Monte Carlo Metropolis algorithm, we reveal striking features. First, a long-period state can be the ground state at low temperatures for some concentrations while only a short-period conventional polar ground state exists for larger x. Second, the electric field-driven transformation, via a first-order transition, of this long-period state into a short-period polar state creates large electromechanical strains (on the order of the percent) and is likely the origin of the colossal piezoelectric response reported in KNN, for which we evaluate an effective piezoelectric coefficient of several thousands of pC/N.
引用
收藏
页码:21501 / 21508
页数:8
相关论文
共 51 条
  • [1] Finite-Temperature Properties of Ba(Zr, Ti)O3 Relaxors from First Principles
    Akbarzadeh, A. R.
    Prosandeev, S.
    Walter, Eric J.
    Al-Barakaty, A.
    Bellaiche, L.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (25)
  • [2] Finite-temperature properties of the relaxor PbMg1/3Nb2/3O3 from atomistic simulations
    Al-Barakaty, A.
    Prosandeev, Sergey
    Wang, Dawei
    Dkhil, B.
    Bellaiche, L.
    [J]. PHYSICAL REVIEW B, 2015, 91 (21)
  • [3] A comprehensive study of the phase diagram of KxNa1-xNbO3
    Baker, D. W.
    Thomas, P. A.
    Zhang, N.
    Glazer, A. M.
    [J]. APPLIED PHYSICS LETTERS, 2009, 95 (09)
  • [4] Bellaiche L, 2000, PHYS REV B, V61, P7877, DOI 10.1103/PhysRevB.61.7877
  • [5] Universal collaborative couplings between oxygen-octahedral rotations and antiferroelectric distortions in perovskites
    Bellaiche, L.
    Iniguez, Jorge
    [J]. PHYSICAL REVIEW B, 2013, 88 (01):
  • [6] Finite-temperature properties of Pb(Zr1-xTix)O3 alloys from first principles
    Bellaiche, L
    García, A
    Vanderbilt, D
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (23) : 5427 - 5430
  • [7] Driving Spin Excitations by Hydrostatic Pressure in BiFeO3
    Buhot, J.
    Toulouse, C.
    Gallais, Y.
    Sacuto, A.
    de Sousa, R.
    Wang, D.
    Bellaiche, L.
    Bibes, M.
    Barthelemy, A.
    Forget, A.
    Colson, D.
    Cazayous, M.
    Measson, M-A.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 115 (26)
  • [8] Domain walls in a perovskite oxide with two primary structural order parameters: First-principles study of BiFeO3
    Dieguez, Oswaldo
    Aguado-Puente, Pablo
    Junquera, Javier
    Iniguez, Jorge
    [J]. PHYSICAL REVIEW B, 2013, 87 (02):
  • [9] Complex octahedral tilt phases in the ferroelectric perovskite system LixNa1-xNbO3
    Dixon, Charlotte A. L.
    Lightfoot, Philip
    [J]. PHYSICAL REVIEW B, 2018, 97 (22)
  • [10] Identifying the local defect structure in (Na0.5K0.5)NbO3: 1 mol. % CuO lead-free ceramics by x-ray absorption spectra
    Fu, Jian
    Zuo, Ruzhong
    Qi, He
    Chan, Tingshan
    [J]. APPLIED PHYSICS LETTERS, 2019, 114 (09)