Vortex-Induced Vibration Performance Analysis of Long-Span Sea-Crossing Bridges Using Unsupervised Clustering

被引:0
|
作者
Chen, Tao [1 ]
Wu, Yi-Lun [1 ]
Yang, Xiao-Mei [1 ]
Yang, Shu-Han [2 ]
机构
[1] Fuzhou Univ, Coll Civil Engn, Fuzhou 350108, Peoples R China
[2] Dalian Univ Technol, Sch Civil Engn, Dalian 116023, Peoples R China
关键词
sea-crossing bridge; vortex-induced vibration; clustering; performance analysis; correlation;
D O I
10.3390/jmse12101890
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Vortex-induced vibration is a type of wind-induced vibration occurring frequently in large-span sea-crossing bridges under relatively low wind speeds, posing a threat to the structural fatigue performance and driving comfort. Identifying the instantaneous occurrence moments of vortex-induced vibration is a prerequisite for establishing a data-driven prediction model for vortex-induced vibration, and it is of great significance for the monitoring and early warning of vortex-induced vibration performance in bridges. To automatically detect the occurrence moments of vortex-induced vibration and establish a correlation model between vortex-induced vibration amplitude and environmental factors, this study proposes a fuzzy C-means clustering-based classification method. In order to detect the occurrence moments of vortex-induced vibration more finely, only short-term or even instantaneous structural vibration indicators were selected and transformed for distribution as clustering features. The entire detection process could be carried out unsupervised, reducing the manual cost of obtaining vortex-induced vibration information from massive monitoring data. Finally, actual vortex-induced vibration test data from a certain overseas bridge was utilized to verify the feasibility of this method. Based on the classification results, the correlation between vortex-induced vibration amplitude and environmental variables was determined, providing valuable guidance for predicting vortex-induced vibration amplitudes.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Review and Reflection on Vortex-induced Vibration of Main Girders of Long-span Bridges
    Ge Y.-J.
    Zhao L.
    Xu K.
    Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 2019, 32 (10): : 1 - 18
  • [2] A novel strategy for mitigating the vortex-induced vibration of long-span bridges by using flexible membranes
    Xu, Haoyu
    Wang, Chaoqun
    Huang, Zhiwen
    Hua, Xugang
    Chen, Zhengqing
    ADVANCES IN STRUCTURAL ENGINEERING, 2024,
  • [3] Simulation of Vortex-Induced Vibration of Long-Span Bridges: A Nonlinear Normal Mode Approach
    Xu, Kun
    Ge, Yaojun
    Zhao, Lin
    Du, Xiuli
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2018, 18 (11)
  • [4] Prediction of vortex-induced wind loading on long-span bridges
    Lee, S
    Lee, JS
    Kim, JD
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 1997, 67-8 : 267 - 278
  • [5] Directional effects of correlated wind and waves on the dynamic response of long-span sea-crossing bridges
    Yang, Rugang
    Li, Yongle
    Xu, Cheng
    Yang, Yi
    Fang, Chen
    APPLIED OCEAN RESEARCH, 2023, 132
  • [6] Vortex-induced vibration performance and mechanism of long-span railway bridge streamlined box girder
    Duan, Qingsong
    Ma, Cunming
    Li, Qiusheng
    ADVANCES IN STRUCTURAL ENGINEERING, 2023, 26 (13) : 2506 - 2519
  • [7] Discrete viscous dampers for multi-mode vortex-induced vibration control of long-span suspension bridges
    Cao, Yiwen
    Huang, Zhiwen
    Zhang, Hongyi
    Hua, Xugang
    Chen, Zhengqing
    Wan, Tianbao
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2023, 243
  • [8] Evaluation of Ride Comfort under Vortex-Induced Vibration of Long-Span Bridge
    Wang, Yafei
    Zhou, Changfa
    Zhong, Jiwei
    Wang, Zhengxing
    Yao, Wenfan
    Jiang, Yuyin
    Laima, Shujin
    APPLIED SCIENCES-BASEL, 2023, 13 (20):
  • [9] Prediction analysis of vortex-induced vibration of long-span suspension bridge based on monitoring data
    Xu, Shiqiao
    Ma, Rujin
    Wang, Dalei
    Chen, Airong
    Tian, Hao
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2019, 191 : 312 - 324
  • [10] Spanwise layout optimization of aerodynamic countermeasures for multi-mode vortex-induced vibration control on long-span bridges
    Sun, Hao
    Zhu, Le-Dong
    Tan, Zhong-Xu
    Zhu, Qing
    Meng, Xiao-Liang
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2024, 244