Impact of Deficit Drip Irrigation with Brackish Water on Soil Water-Salt Dynamics and Maize Yield in Film-Mulched Fields

被引:1
|
作者
Guo, Tongkai [1 ,2 ]
Huang, Xi [1 ,2 ]
Feng, Kewei [1 ,2 ]
Mao, Xiaomin [1 ,2 ]
机构
[1] China Agr Univ, Ctr Agr Water Res China, Beijing 100083, Peoples R China
[2] Res Stn Efficient Water Use Oasis Agr, Natl Field Sci Observat, Wuwei 733000, Peoples R China
来源
AGRONOMY-BASEL | 2025年 / 15卷 / 02期
基金
中国国家自然科学基金;
关键词
saline water irrigation; deficit irrigation; soil water-heat-salt; maize growth; yield; water productivity; SALINE WATER; USE EFFICIENCY; SPRING MAIZE; TEMPERATURE; GROWTH; PRODUCTIVITY; WHEAT; SIMULATION; VOLUME;
D O I
10.3390/agronomy15020379
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Maize production in the arid and semi-arid regions of northwest China is limited by water scarcity, while the abundance of brackish water highlights the opportunity for its effective and sustainable utilization. A 2-year field experiment (2022-2023) was conducted in the Shiyang River Basin to investigate the impacts of deficit irrigation with brackish water on soil moisture, salinity, temperature, crop growth index, yield, and water productivity. Six treatments were implemented, consisting of two irrigation levels (W1: 75%I, W2: 100%I) and three water quality gradients (S0: 0.7 g L-1, S1: 3.7 g L-1, S2: 5.7 g L-1 in 2022 and 7.7 g L-1 in 2023). Results indicated that brackish irrigation (except S0) increased soil salinity, keeping the soil water storage at higher levels, while decreased maize yield, and water productivity (WP). Compared with full irrigation at the same salinity level, deficit irrigation decreased soil salinity, keeping the soil water storage at lower levels, while increasing soil temperature, which led to lower maize yield but resulted in higher WP. Path analysis of soil hydrothermal salinity and crop growth indicators demonstrated that soil salinity changes play a crucial role in determining maize plant height and yield. S0W2 (100% irrigation, 0.7 g L-1) achieved the highest maize yield, with S0W1 yielding 5.15% less. However, the water productivity (WP) of S0W1 was 17.66% higher than that of S0W2. Therefore, considering the combined factors of maize yield, water productivity, and water-saving benefits, the use of S0W1 (75% irrigation, 0.7 g L-1) is recommended.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Film-mulched drip irrigation achieves high maize yield and low N losses in semi-arid areas of northeastern China
    Hou, Yunpeng
    Xu, Xinpeng
    Kong, Lili
    Zhang, Yitao
    Zhang, Lei
    Wang, Lichun
    EUROPEAN JOURNAL OF AGRONOMY, 2023, 146
  • [32] Effects of Soil Water, Plant, Water Saving and Yield Increasing of Maize under Regulated Deficit Drip Irrigation
    Wei Y.
    Ma Y.
    Liu H.
    Zhang Y.
    Yang J.
    Zhang Y.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2018, 49 (03): : 252 - 260
  • [33] Spatial distribution and dynamics of cotton fine root under film-mulched drip irrigation
    Chen, Wenling
    Chen, Feifei
    Lai, Shanxing
    Jin, Menggui
    Xu, Siyu
    Liu, Yanfeng
    Liang, Xing
    Ferre, Ty P. A.
    INDUSTRIAL CROPS AND PRODUCTS, 2022, 179
  • [34] Effect of Different Thresholds of Drip Irrigation Using Saline Water on Soil Salt Transportation and Maize Yield
    Li, Jingang
    Qu, Zhongyi
    Chen, Jin
    Wang, Fan
    Jin, Qiu
    WATER, 2018, 10 (12):
  • [35] Prediction model of soil water and salt transport on yield of summer squash under mulch drip irrigation with brackish water
    Guo X.
    Bi Y.
    Sun X.
    Ma J.
    Kong X.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2019, 8 (167-175): : 167 - 175
  • [36] Simulation of cotton growth and soil water content under film-mulched drip irrigation using modified CSM-CROPGRO-cotton model
    Li, Meng
    Du, Yingji
    Zhang, Fucang
    Bai, Yungang
    Fan, Junliang
    Zhang, Jianghui
    Chen, Shaoming
    AGRICULTURAL WATER MANAGEMENT, 2019, 218 : 124 - 138
  • [37] Evaluating the Sustainable Use of Saline Water Irrigation on Soil Water-Salt Content and Grain Yield under Subsurface Drainage Condition
    Feng, Genxiang
    Zhang, Zhanyu
    Zhang, Zemin
    SUSTAINABILITY, 2019, 11 (22)
  • [38] Optimizing brackish water and nitrogen application regimes for soil salinity, yield, fertilizer and water productivity of a mulched drip irrigated cotton cropping system
    Wang, Ying
    Shi, Wenjuan
    Jing, Bo
    FIELD CROPS RESEARCH, 2023, 302
  • [39] Modeling Maize Yield and Soil Water Content with AquaCrop Under Full and Deficit Irrigation Managements
    Ahmadi, Seyed Hamid
    Mosallaeepour, Elnaz
    Kamgar-Haghighi, Ali Akbar
    Sepaskhah, Ali Reza
    WATER RESOURCES MANAGEMENT, 2015, 29 (08) : 2837 - 2853
  • [40] Improving water saving, yield, and water productivity of bean under deficit drip irrigation: Field and modelling study using the SALTMED model*
    Dewedar, O. M.
    Plauborg, Finn
    Marwa, M. A.
    El-shafie, A. F.
    Ragab, R.
    IRRIGATION AND DRAINAGE, 2021, 70 (02) : 224 - 242