EFFECT OF ULTRASONIC CAVITATION ON THE GAS–LIQUID INTERFACE UNDER FORCED AERATION

被引:0
作者
R.N. Golykh [1 ]
J.-B. Carrat [2 ]
V.N. Khmelev [1 ]
I.A. Manyakhin [1 ]
V.D. Minakov [1 ]
D.V. Genne [1 ]
A.R. Barsukov [1 ]
机构
[1] Biysk Technological Institute-Branch of Polzunov Altai State Technical University, Biysk
[2] Lavrent’ev Institute of Hydrodynamics, SB RAS, Novosibirsk
基金
俄罗斯科学基金会;
关键词
aeration; cavitation; high-speed filming; interface; ultrasound;
D O I
10.1134/S0021894424060075
中图分类号
学科分类号
摘要
ABSTRACT: A setup for experimental studies of the structure, shape, and size of the gas–liquid interface under ultrasonic exposure and forced aeration has been developed. It has been found that ultrasonic exposure leads to an about 1.5-fold increase in interfacial area during aeration. The ultrasound intensity has been shown to have an optimal value that provides a maximum increase in interfacial area per unit ultrasonic energy input. © Pleiades Publishing, Ltd. 2024.
引用
收藏
页码:1082 / 1095
页数:13
相关论文
共 26 条
  • [1] Novoselov A.G., Duzhii A.B., Golikova E., Molecular Diffusion of Gases in Liquids. 1. Molecular Diffusion Coefficients of Carbon Dioxide in Water, Nauch. Zhurn. NIU ITMO. Ser. Protsess. Apparat. Pishch. Proizv, 2014, 2, (2014)
  • [2] Podryga V.O., Vikhrov E.V., Polyakov S.V., Molecular Dynamic Calculation of the Gas Diffusion Coefficient for Argon, Nitrogen, Hydrogen, Oxygen, Methane, and Carbon Dioxide as an Example (Preprint No. 96), (2019)
  • [3] Kasatkin A.G., Basic Processes and Apparatuses of Chemical Technology, (1961)
  • [4] Shadrin E., Anufriev I.S., Sharypov O.V., Atomization and Combustion of Coal-Water Fuel Sprayed by a Pneumatic Nozzle, Prikl. Mekh. Teckh. Fiz, 62, 3, pp. 165-171, (2021)
  • [5] Ramm V.M., Absorption of Gases, (1976)
  • [6] Semenov I.A., Ul'yanov B.A., Sviridov D.P., Kamaev A.S., Effect of Ultrasound on Mass Transfer in the Liquid Phase during Free Rise of a Gas Bubble, Izv. Vuzov. Prikl. Khim. Biotekhnol, 2, pp. 57-61, (2013)
  • [7] Khmelev V.N., Shalunov A.V., Golykh R.N., Determination of the Modes and the Conditions of Ultrasonic Spraying Providing Specified Productivity and Dispersed Characteristics of the Aerosol, J. Appl. Fluid Mech, 10, 5, pp. 1409-1419, (2017)
  • [8] Ostapenko V.V., Conservation Laws of Shallow Water Theory, Dokl. Akad. Nauk, 464, 5, pp. 558-561, (2015)
  • [9] Ostapenko V.V., Modified Shallow Water Theory Equations Which Admit the Propagation of Discontinuous Waves along a Dry Bed, Prikl. Mech. Tekh. Fiz, 48, 6, pp. 22-43, (2007)
  • [10] Abbasov I.B., Numerical Simulation of Nonlinear Surface Gravity Waves Transformation under Shallow-Water Conditions, Appl. Math, 3, pp. 135-141, (2012)