Indium oxide modified with alkali metals: A selective catalyst for the reverse water-gas shift reaction at high pressure

被引:0
作者
Wang, Xinhuilan [1 ]
Toshcheva, Ekaterina [2 ]
Rendon-Patino, Alejandra [1 ]
Martin, Cristina [1 ]
Bhatti, Umair H. [1 ]
Mateo, Diego [1 ]
Ahmad, Rafia [2 ]
Alabsi, Mohnnad H. [3 ]
Cavallo, Luigi [2 ]
Gallo, Jean Marcel R. [1 ]
Gascon, Jorge [1 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, KAUST Catalysis Ctr KCC, Adv Catalyt Mat ACM, Thuwal 239556900, Saudi Arabia
[2] King Abdullah Univ Sci & Technol KAUST, Phys Sci & Engn Div, Thuwal 239556900, Saudi Arabia
[3] Aramco Res Ctr, Adv Mat & Catalysis, Thuwal 239556900, Saudi Arabia
关键词
Reverse water gas shift; High pressure; Low methanation; Industrial conditions; CO2 HYDROGENATION REACTIVITY; METHANOL SYNTHESIS; MECHANISM; ADSORPTION; FTIR; SPECTROSCOPY; DESIGN;
D O I
10.1016/j.cej.2025.160326
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Alkali (K, Rb, Cs)-modified In2O3 displays outstanding performance in the reverse water-gas shift (RWGS) reaction under high pressure. For instance, alkali-containing catalysts achieved nearly stoichiometric selectivity at 350 degrees C and 50 bar, while pristine In2O3 exhibited 58.5 % CO selectivity. Furthermore, the presence of Rb and Cs improved CO2 conversion by approximately 1.8-fold compared to In2O3, reaching equilibrium conversion. Conversely, Li and Na significantly reduced catalytic activity. CO formation followed the trend: Li/In2O3 < Na/In2O3 < In2O3 < K/In2O3 < Rb/In2O3 < Cs/In2O3. The Alkali/In2O3 catalysts also demonstrated greater flexibility under varying reaction conditions. Compared to In2O3, Cs/In2O3 operated at a higher maximum temperature (600 vs. 500 degrees C) and significantly reduced byproduct formation under high space velocity and high H-2/CO2 ratios. Notably, Cs/In2O3 achieved a remarkable CO productivity of 0.26 mol<middle dot>L-1<middle dot>h(-1) at a GHSV of 100 L<middle dot>h(-1)<middle dot>g(-1) at 400 degrees C and 50 bar, outperforming previously reported selective catalysts for high-pressure RWGS. Characterization of fresh and spent samples suggests that the alkali metals are dispersed on the In2O3 surface as carbonates and bicarbonates, particularly on Cs/In2O3, which enhances CO2 uptake and catalytic behavior. DFT and diffuse reflectance infrared Fourier transform spectroscopy reveal that oxygen vacancies play a critical role in the catalytic activity of In2O3 for CO2 conversion, with alkali metal promotion, particularly Cs, further boosting performance. DFT calculations indicate that alkali metals lower the formation energy of oxygen vacancies and enhance CO2 and CO adsorption. Combining computational and experimental data shows that Cs/In2O3 promotes CO formation via the carboxyl pathway while suppressing methanol formation through the formate pathway.
引用
收藏
页数:10
相关论文
共 63 条
[1]  
[Anonymous], 2019, FUT HYDR SEIZ TOD OP
[2]   Alkali-loaded silica, a solid base:: Investigation by FTIR spectroscopy of adsorbed CO2 and its catalytic activity [J].
Bal, R ;
Tope, BB ;
Das, TK ;
Hegde, SG ;
Sivasanker, S .
JOURNAL OF CATALYSIS, 2001, 204 (02) :358-363
[3]  
Bando KK, 1998, APPL CATAL A-GEN, V175, P67
[4]   Impact of K and Ba promoters on CO2 hydrogenation over Cu/Al2O3 catalysts at high pressure [J].
Bansode, Atul ;
Tidona, Bruno ;
von Rohr, Philipp Rudolf ;
Urakawa, Atsushi .
CATALYSIS SCIENCE & TECHNOLOGY, 2013, 3 (03) :767-778
[5]   K and Na Promotion Enables High-Pressure Low-Temperature Reverse Water Gas Shift over Copper-Based Catalysts [J].
Barberis, Laura ;
Versteeg, Christiaan I. ;
Meeldijk, Johannes D. ;
Stewart, Joseph A. ;
Vandegehuchte, Bart D. ;
de Jongh, Petra E. .
ACS CATALYSIS, 2024, 14 (12) :9188-9197
[6]   Turning a Methanation Co Catalyst into an In-Co Methanol Producer [J].
Bavykina, Anastasiya ;
Yarulina, Irina ;
Al Abdulghani, Abdullah J. ;
Gevers, Lieven ;
Hedhili, Mohamed Nejib ;
Miao, Xiaohe ;
Galilea, Adrian Ramirez ;
Pustovarenko, Alexey ;
Dikhtiarenko, Alla ;
Cadiau, Amandine ;
Aguilar-Tapia, Antonio ;
Hazemann, Jean-Louis ;
Kozlov, Sergey M. ;
Oud-Chikh, Samy ;
Cavallo, Luigi ;
Gascon, Jorge .
ACS CATALYSIS, 2019, 9 (08) :6910-6918
[7]   Impact of Kinetic Models on Methanol Synthesis Reactor Predictions: In Silico Assessment and Comparison with Industrial Data [J].
Bisotti, Filippo ;
Fedeli, Matteo ;
Prifti, Kristiano ;
Galeazzi, Andrea ;
Dell'Angelo, Anna ;
Manenti, Flavio .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (05) :2206-2226
[8]   Density Functional Theory and Reaction Kinetics Studies of the Water-Gas Shift Reaction on Pt-Re Catalysts [J].
Carrasquillo-Flores, Ronald ;
Gallo, Jean Marcel R. ;
Hahn, Konstanze ;
Dumesic, James A. ;
Mavrikakis, Manos .
CHEMCATCHEM, 2013, 5 (12) :3690-3699
[9]   Recent Advances in Supported Metal Catalysts and Oxide Catalysts for the Reverse Water-Gas Shift Reaction [J].
Chen, Xiaodong ;
Chen, Ya ;
Song, Chunyu ;
Ji, Peiyi ;
Wang, Nannan ;
Wang, Wenlong ;
Cui, Lifeng .
FRONTIERS IN CHEMISTRY, 2020, 8
[10]   A techno-economic and life cycle assessment for the production of green methanol from CO2: catalyst and process bottlenecks [J].
Cordero-Lanzac, Tomas ;
Ramirez, Adrian ;
Navajas, Alberto ;
Gevers, Lieven ;
Brunialti, Sirio ;
Gandia, Luis M. ;
Aguayo, Andres T. ;
Sarathy, S. Mani ;
Gascon, Jorge .
JOURNAL OF ENERGY CHEMISTRY, 2022, 68 :255-266