C*-DYNAMICAL INVARIANTS AND TOEPLITZ ALGEBRAS OF GRAPHS

被引:0
作者
Bruce, Chris [1 ]
Takeishi, Takuya [2 ]
机构
[1] Newcastle Univ, Sch Math Statist &Phys, Hersche Bldg, Newcastle Upon Tyne NE1 7RU, England
[2] Kyoto Inst Technol, Fac Arts & Sci, Sakyo Ku, Kyoto, Japan
基金
加拿大自然科学与工程研究理事会; 欧洲研究理事会;
关键词
Toeplitz algebra; graph C*-algebra; KMS state; partition function; C*- dynamical system; ERGODIC EQUIVALENCE RELATIONS; KMS STATES; WEIGHTS; SYSTEMS; COHOMOLOGY; GROUPOIDS;
D O I
10.7900/jot.2022oct26.2394
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In recent joint work of the authors with Laca, we precisely formulated the notion of partition function in the context of C*-dynamical systems. Here, we compute the partition functions of C*-dynamical systems arising from Toeplitz algebras of graphs, and we explicitly recover graph-theoretic information in terms of C*-dynamical invariants. In addition, we compute the type for KMS states on C*-algebras of finite (reducible) graphs and prove that the extremal KMS states at critical inverse temperatures give rise to type III lambda factors. Our starting point is an independent result parameterising the partition functions of a certain class of C*-dynamical systems arising from groupoid C*-algebras in terms of beta-summable orbits.
引用
收藏
页码:363 / 411
页数:49
相关论文
共 51 条
[1]  
Bost Jean-Benoit., 1995, Selecta Mathematica, V1, P411, DOI [10.1007/BF01589495, DOI 10.1007/BF01589495]
[2]  
BRATTELI O, 1972, T AM MATH SOC, V171, P195
[3]  
Bratteli O., 1997, OPERATOR ALGEBRAS QU, V2
[4]   Reconstructing directed graphs from generalized gauge actions on their Toeplitz algebras [J].
Brownlowe, Nathan ;
Laca, Marcelo ;
Robertson, Dave ;
Sims, Aidan .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (05) :2632-2641
[5]   Graph algebras and orbit equivalence [J].
Brownlowe, Nathan ;
Carlsen, Toke Meier ;
Whittaker, Michael F. .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2017, 37 :389-417
[6]   Phase Transitions on C*-Algebras from Actions of Congruence Monoids on Rings of Algebraic Integers [J].
Bruce, Chris .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (05) :3653-3697
[7]   Partition Functions as C*-Dynamical Invariants and Actions of Congruence Monoids [J].
Bruce, Chris ;
Laca, Marcelo ;
Takeishi, Takuya .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 382 (02) :1165-1203
[8]   C*-ALGEBRAS FROM ACTIONS OF CONGRUENCE MONOIDS ON RINGS OF ALGEBRAIC INTEGERS [J].
Bruce, Chris .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (01) :699-726
[9]   EQUILIBRIUM STATES AND GROWTH OF QUASI-LATTICE ORDERED MONOIDS [J].
Bruce, Chris ;
Laca, Marcelo ;
Ramagge, Jacqui ;
Sims, Aidan .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (06) :2389-2404
[10]   Partial actions and KMS states on relative graph C*-algebras [J].
Carlsen, Toke M. ;
Larsen, Nadia S. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (08) :2090-2132