Calderón-Zygmund Estimates for the Fractional p-Laplacian

被引:0
作者
Diening, Lars [1 ]
Nowak, Simon [1 ]
机构
[1] Univ Bielefeld, Fak Math, Postfach 100131, D-33501 Bielefeld, Germany
关键词
Nonlocal equations; Fractional p-Laplacian; Regularity; Calder & oacute; n-Zygmund estimates; Fractional maximal functions; ELLIPTIC-EQUATIONS; HOLDER REGULARITY; NONLOCAL EQUATIONS; POTENTIALS; SPACES;
D O I
10.1007/s40818-025-00196-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove fine higher regularity results of Calder & oacute;n-Zygmund-type for equations involving nonlocal operators modelled on the fractional p-Laplacian with possibly discontinuous coefficients of VMO-type. We accomplish this by establishing precise pointwise bounds in terms of certain fractional sharp maximal functions. This approach is new already in the linear setting and enables us to deduce sharp regularity results also in borderline cases.
引用
收藏
页数:33
相关论文
共 50 条
  • [21] Interior Calderon-Zygmund estimates for solutions to general parabolic equations of p-Laplacian type
    Truyen Nguyen
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (06)
  • [22] Global Bifurcation for Fractional p-Laplacian and an Application
    Del Pezzo, Leandro M.
    Quaas, Alexander
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2016, 35 (04): : 411 - 447
  • [23] The Obstacle Problem at Zero for the Fractional p-Laplacian
    Frassu, Silvia
    Rocha, Eugenio M.
    Staicu, Vasile
    SET-VALUED AND VARIATIONAL ANALYSIS, 2022, 30 (01) : 207 - 231
  • [24] A PRIORI ESTIMATES FOR THE FRACTIONAL p-LAPLACIAN WITH NONLOCAL NEUMANN BOUNDARY CONDITIONS AND APPLICATIONS
    Mugnai, Dimitri
    Perera, Kanishka
    Lippi, Edoardo Proietti
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (01) : 275 - 292
  • [25] Limit problems for a Fractional p-Laplacian as p → ∞
    Ferreira, Raul
    Perez-Llanos, Mayte
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2016, 23 (02):
  • [26] Weighted gradient estimates for the parabolic p-Laplacian equations
    Yao, Fengping
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 112 : 58 - 68
  • [27] ON FRACTIONAL p-LAPLACIAN PROBLEMS WITH WEIGHT
    Lehrer, Raquel
    Maia, Liliane A.
    Squassina, Marco
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2015, 28 (1-2) : 15 - 28
  • [28] EIGENVALUES HOMOGENIZATION FOR THE FRACTIONAL p-LAPLACIAN
    Martin Salort, Ariel
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [29] The parabolic p-Laplacian with fractional differentiability
    Breit, Dominic
    Diening, Lars
    Storn, Johannes
    Wichmann, Joern
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (03) : 2110 - 2138
  • [30] The sliding methods for the fractional p-Laplacian
    Wu, Leyun
    Chen, Wenxiong
    ADVANCES IN MATHEMATICS, 2020, 361