A Dynamic Hybrid Approach Based on Ant Colony Optimization and Simulated Annealing to Solve the Multi-objective K-Minimum Spanning Tree Problem

被引:0
|
作者
Addou, El Houcine [1 ]
Serghini, Abelhafid [1 ]
Mermri, El Bekkaye [2 ]
Kodad, Mohcine [3 ]
机构
[1] Mohammed First Univ, LANO Lab, FSO ESTO, Oujda, Morocco
[2] Mohammed First Univ, FSO, Oujda 60000, Morocco
[3] Mohammed First Univ, MATSI Lab, ESTO, Oujda, Morocco
来源
ADVANCES IN SMART MEDICAL, IOT & ARTIFICIAL INTELLIGENCE, VOL 1, ICSMAI 2024 | 2024年 / 11卷
关键词
Approximation algorithms; Multi-Objective Optimizations; K-minimum spanning tree; dynamic weighted sum method; ALGORITHM;
D O I
10.1007/978-3-031-66850-0_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an efficient approximate hybrid algorithm designed to tackle the multi-objective k-Minimum Spanning Tree (MO k-MST) problem. Instead of aiming to identify the entire Pareto optimal solution set, we opt to convert the MO nature of the problem to a single objective one using the weighted sum method. Subsequently, we integrate both simulated annealing (SA) and ant colony optimization (ACO) algorithms in order discover practical solutions to the problem. The MO k-MST dilemma arises in various real-world decision-making scenarios. Numerical experiments demonstrate that our proposed hybrid approach outperforms the standalone simulated annealing method, thus offering enhanced performance.
引用
收藏
页码:40 / 47
页数:8
相关论文
共 47 条
  • [21] Mixed-model assembly line balancing using a multi-objective ant colony optimization approach
    Yagmahan, Betul
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (10) : 12453 - 12461
  • [22] Optimal design of linear sensor networks for process plants: A multi-objective ant colony optimization approach
    He, Yi-Jun
    Ma, Zi-Feng
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2014, 135 : 37 - 47
  • [23] A Hybrid Surrogate-Based Approach for Evolutionary Multi-Objective Optimization
    Rosales-Perez, Alejandro
    Coello Coello, Carlos A.
    Gonzalez, Jesus A.
    Reyes-Garcia, Carlos A.
    Jair Escalante, Hugo
    2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 2548 - 2555
  • [24] GRASP with hybrid heuristic-subproblem optimization for the multi-level capacitated minimum spanning tree problem
    Martins, Alexandre X.
    de Souza, Mauricio C.
    Souza, Marcone J. F.
    Toffolo, Tulio A. M.
    JOURNAL OF HEURISTICS, 2009, 15 (02) : 133 - 151
  • [25] A novel design and implementation technique for low complexity variable digital filters using multi-objective artificial bee colony optimization and a minimal spanning tree approach
    Bindima, T.
    Elias, Elizabeth
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2017, 59 : 133 - 147
  • [26] Solving the traveling salesman problem based on the genetic simulated annealing ant colony system with particle swarm optimization techniques
    Chen, Shyi-Ming
    Chien, Chih-Yao
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (12) : 14439 - 14450
  • [27] A Special Points-Based Hybrid Prediction Strategy for Dynamic Multi-Objective Optimization
    Li, Jianxia
    Liu, Ruochen
    Wang, Ruinan
    Liu, Jin
    Mu, Caihong
    IEEE ACCESS, 2019, 7 : 62496 - 62510
  • [28] Solving hybrid charging strategy electric vehicle based dynamic routing problem via evolutionary multi-objective optimization
    Wang, Zhenzhong
    Ye, Kai
    Jiang, Min
    Yao, Junfeng
    Xiong, Neal N.
    Yen, Gary G.
    SWARM AND EVOLUTIONARY COMPUTATION, 2022, 68
  • [29] A dynamic multi-objective optimization based on a hybrid of pivot points prediction and diversity strategies
    Zheng, Jinhua
    Zhou, Fei
    Zou, Juan
    Yang, Shengxiang
    Hu, Yaru
    SWARM AND EVOLUTIONARY COMPUTATION, 2023, 78
  • [30] Solving a multi-objective manufacturing cell scheduling problem with the consideration of warehouses using a simulated annealing based procedure
    Toncovich, Adrian A.
    Rossit, Daniel A.
    Frutos, Mariano
    Rossit, Diego G.
    INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING COMPUTATIONS, 2019, 10 (01) : 1 - 16