Advanced AI techniques for classifying Alzheimer's disease and mild cognitive impairment

被引:5
作者
Tascedda, Sophie [1 ,2 ,3 ]
Sarti, Pierfrancesco [4 ,5 ]
Rivi, Veronica [4 ]
Guerrera, Claudia Savia [6 ]
Platania, Giuseppe Alessio [6 ]
Santagati, Mario [7 ]
Caraci, Filippo [8 ,9 ]
Blom, Johanna M. C. [2 ,10 ]
机构
[1] Ctr Hosp Univ Vaudois CHUV, Plateforme Bioinformat, Lausanne, Switzerland
[2] Serv Chim Clin CHUV, Lausanne, Switzerland
[3] Univ Lausanne, Fac Biol & Medecine, Lausanne, Switzerland
[4] Univ Modena & Reggio Emilia, Dept Biomed Metab & Neural Sci, Modena, Italy
[5] Univ Zurich, Psychiat Hosp, Dept Adult Psychiat & Psychotherapy, Zurich, Switzerland
[6] Univ Catania, Dept Educ Sci, Catania, Italy
[7] Alzheimer Psychogeriatr Ctr, Dept Mental Hlth, ASP3 Catania, Catania, Italy
[8] Univ Catania, Dept Drug & Hlth Sci, Catania, Italy
[9] Oasi Res Inst IRCCS, Unit Neuropharmacol & Translat Neurosci, Troina, Italy
[10] Univ Modena & Reggio Emilia, Ctr Neurosci & Neurotechnol, Modena, Italy
关键词
artificial intelligence; graph convolutional networks; machine learning; deep learning; dementia; neural networks; ASSOCIATION WORKGROUPS; DIAGNOSTIC GUIDELINES; NATIONAL INSTITUTE; RECOMMENDATIONS; DEMENTIA; CLASSIFICATION; NETWORKS; MRI;
D O I
10.3389/fnagi.2024.1488050
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
Background Alzheimer's disease and mild cognitive impairment are often difficult to differentiate due to their progressive nature and overlapping symptoms. The lack of reliable biomarkers further complicates early diagnosis. As the global population ages, the incidence of cognitive disorders increases, making the need for accurate diagnosis critical. Timely and precise diagnosis is essential for the effective treatment and intervention of these conditions. However, existing diagnostic methods frequently lead to a significant rate of misdiagnosis. This issue underscores the necessity for improved diagnostic techniques to better identify cognitive disorders in the aging population.Methods We used Graph Neural Networks, Multi-Layer Perceptrons, and Graph Attention Networks. GNNs map patient data into a graph structure, with nodes representing patients and edges shared clinical features, capturing key relationships. MLPs and GATs are used to analyse discrete data points for tasks such as classification and regression. Each model was evaluated on accuracy, precision, and recall.Results The AI models provide an objective basis for comparing patient data with reference populations. This approach enhances the ability to accurately distinguish between AD and MCI, offering more precise risk stratification and aiding in the development of personalized treatment strategies.Conclusion The incorporation of AI methodologies such as GNNs and MLPs into clinical settings holds promise for enhancing the diagnosis and management of Alzheimer's disease and mild cognitive impairment. By deploying these advanced computational techniques, clinicians could see a reduction in diagnostic errors, facilitating earlier, more precise interventions, and likely to lead to significantly improved outcomes for patients.
引用
收藏
页数:9
相关论文
共 62 条
[1]   The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease [J].
Albert, Marilyn S. ;
DeKosky, Steven T. ;
Dickson, Dennis ;
Dubois, Bruno ;
Feldman, Howard H. ;
Fox, Nick C. ;
Gamst, Anthony ;
Holtzman, David M. ;
Jagust, William J. ;
Petersen, Ronald C. ;
Snyder, Peter J. ;
Carrillo, Maria C. ;
Thies, Bill ;
Phelps, Creighton H. .
ALZHEIMERS & DEMENTIA, 2011, 7 (03) :270-279
[2]   Machine learning for the detection and diagnosis of cognitive impairment in Parkinson's Disease: A systematic review [J].
Altham, Callum ;
Zhang, Huaizhong ;
Pereira, Ella .
PLOS ONE, 2024, 19 (05)
[3]  
Amin R., 2021, Front. Aging Neurosci, V13, P706095, DOI [10.3389/fnagi.2021.706095, DOI 10.3389/FNAGI.2021.706095]
[4]   Prediction of Alzheimer's disease progression within 6 years using speech: A novel approach leveraging language models [J].
Amini, Samad ;
Hao, Boran ;
Yang, Jingmei ;
Karjadi, Cody ;
Kolachalama, Vijaya B. ;
Au, Rhoda ;
Paschalidis, Ioannis C. .
ALZHEIMERS & DEMENTIA, 2024, 20 (08) :5262-5270
[5]  
Armananzas R., 2013, Pattern Recogn. Lett, V34, P1725, DOI [10.1016/j.artmed.2013.04.002, DOI 10.1016/J.ARTMED.2013.04.002]
[6]   A systematic review on machine learning and deep learning techniques in the effective diagnosis of Alzheimer's disease [J].
Arya, Akhilesh Deep ;
Verma, Sourabh Singh ;
Chakarabarti, Prasun ;
Chakrabarti, Tulika ;
Elngar, Ahmed A. ;
Kamali, Ali-Mohammad ;
Nami, Mohammad .
BRAIN INFORMATICS, 2023, 10 (01)
[7]  
Baskar S., 2023, 2023 IEEE N KARN SUB, P1
[8]  
Bertozzi A. L., 2019, Neuroinformatics, V17, P321, DOI [10.1007/s12021-019-09495-3, DOI 10.1007/S12021-019-09495-3]
[9]   Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: The CADDementia challenge [J].
Bron, Esther E. ;
Smits, Marion ;
van der Flier, Wiesje M. ;
Vrenken, Hugo ;
Barkhof, Frederik ;
Scheltens, Philip ;
Papma, Janne M. ;
Steketee, Rebecca M. E. ;
Orellana, Carolina Mendez ;
Meijboom, Rozanna ;
Pinto, Madalena ;
Meireles, Joana R. ;
Garrett, Carolina ;
Bastos-Leite, Antonio J. ;
Abdulkadir, Ahmed ;
Ronneberger, Olaf ;
Amoroso, Nicola ;
Bellotti, Roberto ;
Cardenas-Pena, David ;
Alvarez-Meza, Andres M. ;
Dolph, Chester V. ;
Iftekharuddin, Khan M. ;
Eskildsen, Simon F. ;
Coupe, Pierrick ;
Fonov, Vladimir S. ;
Franke, Katja ;
Gaser, Christian ;
Ledig, Christian ;
Guerrero, Ricardo ;
Tong, Tong ;
Gray, Katherine R. ;
Moradi, Elaheh ;
Tohka, Jussi ;
Routier, Alexandre ;
Durrleman, Stanley ;
Sarica, Alessia ;
Di Fatta, Giuseppe ;
Sensi, Francesco ;
Chincarini, Andrea ;
Smith, Garry M. ;
Stoyanov, Zhivko V. ;
Sorensen, Lauge ;
Nielsen, Mads ;
Tangaro, Sabina ;
Inglese, Paolo ;
Wachinger, Christian ;
Reuter, Martin ;
van Swieten, John C. ;
Niessen, Wiro J. ;
Klein, Stefan .
NEUROIMAGE, 2015, 111 :562-579
[10]   A Machine Learning Approach for the Differential Diagnosis of Alzheimer and Vascular Dementia Fed by MRI Selected Features [J].
Castellazzi, Gloria ;
Cuzzoni, Maria Giovanna ;
Cotta Ramusino, Matteo ;
Martinelli, Daniele ;
Denaro, Federica ;
Ricciardi, Antonio ;
Vitali, Paolo ;
Anzalone, Nicoletta ;
Bernini, Sara ;
Palesi, Fulvia ;
Sinforiani, Elena ;
Costa, Alfredo ;
Micieli, Giuseppe ;
D'Angelo, Egidio ;
Magenes, Giovanni ;
Gandini Wheeler-Kingshott, Claudia A. M. .
FRONTIERS IN NEUROINFORMATICS, 2020, 14