A multi-scale temporal convolutional capsule network with parameter-free attention module-dynamic routing for intelligent diagnosis of rolling bearing

被引:0
|
作者
Jin, Yulin [1 ,3 ]
Hao, Liang [2 ]
He, Xinghua [3 ]
Liu, Zhiwen [2 ]
机构
[1] Southwest Jiaotong Univ, Sch Mech Engn, Chengdu 610031, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Peoples R China
[3] Harbin Inst Technol, Sch Astronaut, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
multi-scale temporal convolutional capsule network; parameter-free attention module; dynamic routing; rolling bearing; intelligent diagnosis; DEEP NEURAL-NETWORKS; FAULT-DIAGNOSIS; ALGORITHM; SYSTEM;
D O I
10.1088/1361-6501/ad8add
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We proposed a multi-scale temporal convolutional capsule network model coupled with a parameter-free attention module and dynamic routing mechanism to analyze complex vibration signals for diagnosing the health of bearings. The proposed method utilizes a capsule network as the fundamental architecture. Instead of a convolutional neural network, a temporal convolutional network is employed. Additionally, a multi-scale feature fusion module is integrated into the capsule network structure to dynamically extract various layers of features from fault samples, enhancing the discriminatory capability of abnormal data. Subsequently, the parameter-free attention module and dynamic routing mechanism are employed to construct digital capsules. This allows the smallest unit capsule in a single layer to carry more information, enhance the similarity between the instance primary capsule and the fault capsule, reduce the interference of irrelevant features to the model, and improve the accuracy of fault type recognition. Finally, a multi-scale temporal convolutional capsule network model that integrates feature extraction and pattern recognition is established to perform end-to-end diagnosis of the bearing. Experimental findings suggest that the proposed method outperforms other deep learning methods in terms of accuracy and robustness. It can provide a theoretical basis and implementation path for the detection and diagnosis of train wheelset bearing time series abnormal data.
引用
收藏
页数:18
相关论文
共 46 条
  • [1] Multi-scale convolutional network with channel attention mechanism for rolling bearing fault diagnosis
    Huang, Ya-Jing
    Liao, Ai-Hua
    Hu, Ding-Yu
    Shi, Wei
    Zheng, Shu-Bin
    MEASUREMENT, 2022, 203
  • [2] Rolling bearing fault diagnosis with multi-scale multi-task attention convolutional neural network
    Wang, Zhaowei
    Liu, Chuanshuai
    Zhao, Wenxiang
    Song, Xiangjin
    Dianji yu Kongzhi Xuebao/Electric Machines and Control, 2024, 28 (07): : 65 - 76
  • [3] An intelligent diagnosis method of rolling bearing based on multi-scale residual shrinkage convolutional neural network
    Zhao, Xiaoqiang
    Zhang, Yazhou
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (08)
  • [4] A novel multi-scale convolutional neural network incorporating multiple attention mechanisms for bearing fault diagnosis
    Hu, Baoquan
    Liu, Jun
    Xu, Yue
    MEASUREMENT, 2025, 242
  • [5] Fault diagnosis of rolling bearing based on feature fusion of multi-scale deep convolutional network
    Wang N.
    Ma P.
    Zhang H.
    Wang C.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2022, 43 (04): : 351 - 358
  • [6] Fault Diagnosis Method for Bearing Based on Attention Mechanism and Multi-Scale Convolutional Neural Network
    Shen, Qimin
    Zhang, Zengqiang
    IEEE ACCESS, 2024, 12 : 12940 - 12952
  • [7] Multi-Scale Channel Mixing Convolutional Network and Enhanced Residual Shrinkage Network for Rolling Bearing Fault Diagnosis
    Li, Xiaoxu
    Chen, Jiaming
    Wang, Jianqiang
    Wang, Jixuan
    Wang, Jiahao
    Li, Xiaotao
    Kan, Yingnan
    ELECTRONICS, 2025, 14 (05):
  • [8] MRNet: rolling bearing fault diagnosis in noisy environment based on multi-scale residual convolutional network
    Deng, Linfeng
    Zhao, Cheng
    Wang, Xiaoqiang
    Wang, Guojun
    Qiu, Ruiyu
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (12)
  • [9] Rolling bearing fault diagnosis method based on a multi-scale and improved gated recurrent neural network with dual attention
    Wang M.
    Deng A.
    Ma T.
    Zhang Y.
    Xue Y.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (06): : 84 - 92and103
  • [10] Multi-scale attention mechanism residual neural network for fault diagnosis of rolling bearings
    Wang, Yan
    Liang, Jie
    Gu, Xiaoguang
    Ling, Dan
    Yu, Haowen
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2022, 236 (20) : 10615 - 10629