A convolutional-transformer reinforcement learning agent for rotating machinery fault diagnosis

被引:0
|
作者
Li, Zhenning [1 ]
Jiang, Hongkai [1 ]
Dong, Yutong [1 ]
机构
[1] Northwestern Polytech Univ, Sch Civil Aviat, Xian 710072, Peoples R China
关键词
Rotating machinery; Fault diagnosis; Convolutional-transformer; Reinforcement learning agent;
D O I
10.1016/j.eswa.2025.126669
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the maintenance and management of rotating machinery, vibration signals during operation can reflect the health status of the system. Deep learning algorithms have enabled automatic feature extraction in vibration monitoring and diagnostic technologies, gaining widespread recognition in intelligent equipment management, though some limitations still exist. To improve model performance under limited sample scenarios and incorporate continuously optimizable strategies, this study introduces LiteDPER-CTQN (Lightweight Double Prioritized Experience Replay with Convolutional Transformer Q-Network), a novel fault diagnosis agent incorporating reinforcement learning. The agent demonstrates superior feature extraction and model adaptation through three key innovations: a lightweight reinforcement learning framework ensuring efficient and stable training, an enhanced Transformer-based architecture enabling multi-scale feature fusion, and an integrated intelligent diagnosis system. Experimental results on both bench tests and electric locomotive data demonstrate that our method achieves higher diagnosis accuracy, faster convergence, and lower computational resource consumption compared to state-of-the-art approaches, while the visualization of the Q-value function enhances the interpretability of the decision-making process.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] A review of fault diagnosis methods for rotating machinery
    Shi, Zhenjin
    Li, Yueyang
    Liu, Shuai
    2020 IEEE 16TH INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION (ICCA), 2020, : 1618 - 1623
  • [32] A method for intelligent fault diagnosis of rotating machinery
    Chen, CZ
    Mo, CT
    DIGITAL SIGNAL PROCESSING, 2004, 14 (03) : 203 - 217
  • [33] A fault diagnosis scheme for rotating machinery using hierarchical symbolic analysis and convolutional neural network
    Yang, Yuantao
    Zheng, Huailiang
    Li, Yongbo
    Xu, Minqiang
    Chen, Yushu
    ISA TRANSACTIONS, 2019, 91 : 235 - 252
  • [34] A Time Series Transformer based method for the rotating machinery fault diagnosis q
    Jin, Yuhong
    Hou, Lei
    Chen, Yushu
    NEUROCOMPUTING, 2022, 494 : 379 - 395
  • [35] Multichannel Information Fusion and Deep Transfer Learning for Rotating Machinery Fault Diagnosis
    Zhang L.
    Hu Y.
    Zhao L.
    Zhang H.
    Zhongguo Jixie Gongcheng/China Mechanical Engineering, 2023, 34 (08): : 966 - 975
  • [36] Data mining for fault diagnosis and machine learning for rotating machinery
    Zhao, G
    Jiang, DX
    Kai, L
    Diao, JH
    DAMAGE ASSESSMENT OF STRUCTURES VI, 2005, 293-294 : 175 - 182
  • [37] A lifting contrastive learning method for rotating machinery fault diagnosis
    Liu, Zhuolin
    Zhang, Yan
    Huang, Qingqing
    2023 3RD ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS TECHNOLOGY AND COMPUTER SCIENCE, ACCTCS, 2023, : 547 - 551
  • [38] Unified discriminant manifold learning for rotating machinery fault diagnosis
    Changyuan Yang
    Sai Ma
    Qinkai Han
    Journal of Intelligent Manufacturing, 2023, 34 : 3483 - 3494
  • [39] Deep Contrastive Transfer Learning for Rotating Machinery Fault Diagnosis
    Zhu, Peng
    Ma, Sai
    Han, Qinkai
    Chu, Fulei
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [40] Compound-Fault Diagnosis of Rotating Machinery: A Fused Imbalance Learning Method
    Zhang, Jingfei
    Zhang, Qinghua
    He, Xiao
    Sun, Guoxi
    Zhou, Donghua
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2021, 29 (04) : 1462 - 1474