Impact of urban green space morphology and vegetation composition on seasonal land surface temperature: a case study of Beijing's urban core

被引:5
作者
Sun, Xiaoting [1 ]
Fang, Panfei [1 ]
Huang, Shaodong [1 ]
Liang, Yuying [1 ]
Zhang, Jia [2 ]
Wang, Jia [1 ]
机构
[1] Beijing Forestry Univ, Beijing Key Lab Precis Forestry, Beijing 100083, Peoples R China
[2] City Adm Command Ctr Chaoyang Dist Beijing Municip, 33 Ritan North St, Beijing, Peoples R China
基金
北京市自然科学基金;
关键词
Land surface temperature; Contribution; Marginal effects; Urban green space morphology; Vegetation composition; HEAT; CLIMATE; CITY; MITIGATION; SHADE; COVER; TREES; SIZE;
D O I
10.1016/j.uclim.2025.102367
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Urban green spaces play a crucial role in mitigating the Urban Heat Island (UHI) effect by cooling surface temperatures. This study used Landsat 8 data and urban green space surveys, applying Radiative Transfer Equation (RTE) and Boosted Regression Tree (BRT) models to analyze how green space morphology and vegetation composition influence land surface temperature (LST) across seasons. Results show that the percentage of green space area (PLAND) has the greatest impact on LST year-round. In summer and winter, additional morphological factors, such as Largest Patch Index (LPI), Mean Patch Size (MPS), and Edge Density (ED), also play important roles. A cooling effect is observed when PLAND exceeds thresholds of 34.5 % in spring, 44.5 % in summer, 39.6 % in autumn, and 37.4 % in winter, though the effect diminishes with further increases. Trees provide the highest contribution to LST reduction in all seasons, with particularly strong effects in summer (66.8 %) and autumn (65.7 %). Optimizing urban green space design through strategic planning and a balance of vegetation types can significantly enhance temperature regulation, reduce UHI effects, and improve urban ecological quality.
引用
收藏
页数:14
相关论文
共 70 条
[1]   Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas [J].
Akbari, H ;
Pomerantz, M ;
Taha, H .
SOLAR ENERGY, 2001, 70 (03) :295-310
[2]  
Akbari H., 1990, Summer Heat Islands, Urban Trees, and White Surfaces
[3]   The effect of multi-dimensional indicators on urban thermal conditions [J].
Alavipanah, Saddrodin ;
Schreyer, Johannes ;
Haase, Dagmar ;
Lakes, Tobia ;
Qureshi, Salman .
JOURNAL OF CLEANER PRODUCTION, 2018, 177 :115-123
[4]  
Allen R. G., 1998, FAO Irrigation and Drainage Paper
[5]   The effect of tree shade and grass on surface and globe temperatures in an urban area [J].
Armson, D. ;
Stringer, P. ;
Ennos, A. R. .
URBAN FORESTRY & URBAN GREENING, 2012, 11 (03) :245-255
[6]  
Barsi Julia A., 2005, Proceedings of the SPIE - The International Society for Optical Engineering, V5882, P1, DOI 10.1117/12.619990
[7]   Spatio-temporal analysis of the relationship between 2D/3D urban site characteristics and land surface temperature [J].
Berger, C. ;
Rosentreter, J. ;
Voltersen, M. ;
Baumgart, C. ;
Schmullius, C. ;
Hese, S. .
REMOTE SENSING OF ENVIRONMENT, 2017, 193 :225-243
[8]   Urban greening to cool towns and cities: A systematic review of the empirical evidence [J].
Bowler, Diana E. ;
Buyung-Ali, Lisette ;
Knight, Teri M. ;
Pullin, Andrew S. .
LANDSCAPE AND URBAN PLANNING, 2010, 97 (03) :147-155
[9]   Do water bodies play an important role in the relationship between urban form and land surface temperature? [J].
Cai, Zhi ;
Han, Guifeng ;
Chen, Mingchun .
SUSTAINABLE CITIES AND SOCIETY, 2018, 39 :487-498
[10]   A preliminary study on the local cool-island intensity of Taipei city parks [J].
Chang, Chi-Ru ;
Li, Ming-Huang ;
Chang, Shyh-Dean .
LANDSCAPE AND URBAN PLANNING, 2007, 80 (04) :386-395