Generating functions of generalized Gaussian polynomials

被引:0
|
作者
Boussayoud, Ali [1 ,2 ]
Saba, Nabiha [1 ,2 ]
Boulaaras, Salah [3 ]
机构
[1] Mohamed Seddik Ben Yahia Univ, Fac Exact Sci & Informat, LMAM Lab, Jijel, Algeria
[2] Mohamed Seddik Ben Yahia Univ, Dept Math, Jijel, Algeria
[3] Qassim Univ, Coll Sci, Dept Math, Buraydah 51452, Saudi Arabia
关键词
generalized Gaussian polynomials; symmetric functions; ordinary generating functions; (p; q )-Fibonacci-like numbers; Gaussian numbers; Mathematical operators; HARMONIC CONVEXITIES; SYMMETRIC FUNCTIONS; NUMBERS; JACOBSTHAL; PELL;
D O I
10.2298/FIL2423187B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first define new generalization for Gaussian polynomials {GW(n)(x)}(n >= 0) and then we obtain the Binet's formula to find the n(th) general term of generalized Gaussian polynomials {GW(n)(x)}(n >= 0). After that, the ordinary generating functions and the explicit formulas of generalized Gaussian polynomials and (p, q)-Fibonacci-like numbers are obtained. Considering the sequence of generalized Gaussian polynomials, we give Binet's formulas, explicit formulas and ordinary generating functions of Gaussian Pell and Gaussian Pell Lucas polynomials, Gaussian Jacobsthal and Gaussian Jacobsthal Lucas polynomials, Gaussian Fibonacci and Gaussian Lucas polynomials. Also, we present and prove certain ordinary generating functions for the products of (p, q)-Fibonacci-like numbers with these Gaussian polynomials and the products of (p, q)-Fibonacci-like numbers with Gaussian Fibonacci numbers, Gaussian Lucas numbers, Gaussian Jacobsthal numbers, Gaussian Jacobsthal Lucas numbers, Gaussian Pell numbers and Gaussian Pell Lucas numbers.
引用
收藏
页码:8187 / 8209
页数:23
相关论文
共 50 条