Investigation of the swelling behavior of nanoprecipitate strengthened martensite-austenite dual phase steel under helium irradiation

被引:0
作者
Yu, Yongzheng [1 ]
Zhang, Yang [1 ]
Hao, Jingwei [1 ]
Zhang, Zhongwu [1 ]
机构
[1] Harbin Engn Univ, Coll Mat Sci & Chem Engn, Harbin 150001, Peoples R China
来源
MATERIALS TODAY COMMUNICATIONS | 2025年 / 44卷
关键词
Nanoprecipitates; Dual-phase steel; Helium bubbles; Irradiation swelling; MECHANICAL-PROPERTIES; ION IRRADIATION; PRECIPITATION; DISLOCATIONS; EVOLUTION; CU;
D O I
10.1016/j.mtcomm.2025.112045
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The development of a new generation of irradiation swelling-resistant materials is a crucial step in improving irradiation stability. In this study, helium ions were employed to irradiate the solid solution (without nano- precipitates) and aging (nanoprecipitates in martensite) martensite-austenite dual phase steels. The temperature was maintained at 500 degrees C with a fluence of 1.7 x 1017 ions center dot cm-2. The results show that the Cu-rich nano- precipitates within martensite coarsen after irradiation in the aged dual-phase steel. The pre-existing nano- precipitates effectively capture helium bubbles and inhibit their growth. The swelling rate of martensite is 0.095 %/dpa, only one-third of that in the solid solution state. During irradiation, high-density dislocations in austenite prevent the aggregation and growth of helium bubbles, resulting in a swelling rate of 0.082 %/dpa, which is superior to that of martensite in terms of irradiation resistance. The pre-existing nanoprecipitates in the aged steel and the high-density dislocations of austenite within the framework structure jointly enhance the resistance to irradiation damage, thereby exhibiting excellent anti-swelling properties.
引用
收藏
页数:9
相关论文
共 44 条
[1]   Defect-interface interactions [J].
Beyerlein, I. J. ;
Demkowicz, M. J. ;
Misra, A. ;
Uberuaga, B. P. .
PROGRESS IN MATERIALS SCIENCE, 2015, 74 :125-210
[2]   Ultrastrong nanocrystalline steel with exceptional thermal stability and radiation tolerance [J].
Du, Congcong ;
Jin, Shenbao ;
Fang, Yuan ;
Li, Jin ;
Hu, Shenyang ;
Yang, Tingting ;
Zhang, Ying ;
Huang, Jianyu ;
Sha, Gang ;
Wang, Yugang ;
Shang, Zhongxia ;
Zhang, Xinghang ;
Sun, Baoru ;
Xin, Shengwei ;
Shen, Tongde .
NATURE COMMUNICATIONS, 2018, 9
[3]   Superior radiation tolerance via reversible disordering-ordering transition of coherent superlattices [J].
Du, Jinlong ;
Jiang, Suihe ;
Cao, Peipei ;
Xu, Chuan ;
Wu, Yuan ;
Chen, Huaqiang ;
Fu, Engang ;
Lu, Zhaoping .
NATURE MATERIALS, 2023, 22 (04) :442-+
[5]  
El Atwani O, 2023, NAT COMMUN, V14, DOI 10.1038/s41467-023-38000-y
[6]   Microstructural evolution in ODS-EUROFER steel caused by high-dose He ion implantations with systematic variation of implantation parameters [J].
Emelyanova, O. V. ;
Gentils, A. ;
Borodin, V. A. ;
Dzhumaev, P. S. ;
Vladimirov, P. V. ;
Lindau, R. ;
Moeslang, A. .
NUCLEAR MATERIALS AND ENERGY, 2023, 35
[7]   Dislocation loop evolution under ion irradiation in austenitic stainless steels [J].
Etienne, A. ;
Hernandez-Mayoral, M. ;
Genevois, C. ;
Radiguet, B. ;
Pareige, P. .
JOURNAL OF NUCLEAR MATERIALS, 2010, 400 (01) :56-63
[8]   Experimental measurement of dislocation density in metallic materials: A quantitative comparison between measurements techniques (XRD, R-ECCI, HR-EBSD, TEM) [J].
Gallet, J. ;
Perez, M. ;
Guillou, R. ;
Ernould, C. ;
Le Bourlot, C. ;
Langlois, C. ;
Beausir, B. ;
Bouzy, E. ;
Chaise, T. ;
Cazottes, S. .
MATERIALS CHARACTERIZATION, 2023, 199
[9]   Effect of dislocations on helium retention in deformed pure iron [J].
Gong, Y. H. ;
Cao, X. Z. ;
Jin, S. X. ;
Lu, E. Y. ;
Hu, Y. C. ;
Zhu, T. ;
Kuang, P. ;
Xu, Q. ;
Wang, B. Y. .
JOURNAL OF NUCLEAR MATERIALS, 2016, 482 :93-98
[10]   Design of Radiation Tolerant Materials Via Interface Engineering [J].
Han, Weizhong ;
Demkowicz, Michael J. ;
Mara, Nathan A. ;
Fu, Engang ;
Sinha, Subhasis ;
Rollett, Anthony D. ;
Wang, Yongqiang ;
Carpenter, John S. ;
Beyerlein, Irene J. ;
Misra, Amit .
ADVANCED MATERIALS, 2013, 25 (48) :6975-6979