Single-Molecule Solvolysis Reaction Dynamics under Electrostatic Catalysis and Proton Tunneling

被引:0
|
作者
Xie, Xinmiao [1 ,2 ,3 ]
Yang, Jiajia [4 ,5 ]
Yan, Yong [1 ,2 ,3 ]
Hao, Jie [6 ]
Yang, Chen [3 ]
Guo, Yilin [3 ]
Wang, Haobin [7 ]
Zhong, Bingchen [3 ]
Huang, Wei [1 ,2 ]
Cui, Ganglong [4 ]
Fang, Weihai [4 ]
Xie, Linghai [1 ,2 ]
Guo, Xuefeng [3 ,6 ]
机构
[1] Nanjing Univ Posts & Telecommun, Ctr Mol Syst & Organ Devices, State Key Lab Organ Elect & Informat Displays, Nanjing 210023, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Inst Adv Mat, Nanjing 210023, Peoples R China
[3] Peking Univ, Coll Chem & Mol Engn, Natl Biomed Imaging Ctr, Beijing Natl Lab Mol Sci, Beijing 100871, Peoples R China
[4] Beijing Normal Univ, Coll Chem, Key Lab Theoret & Computat Photochem, Minist Educ, Beijing 100875, Peoples R China
[5] Sichuan Normal Univ, Coll Chem & Mat Sci, Chengdu 610068, Peoples R China
[6] Nankai Univ, Coll Elect Informat & Opt Engn, Ctr Single Mol Sci, Frontiers Sci Ctr New Organ Matter, Tianjin 300350, Peoples R China
[7] Univ Colorado Denver, Dept Chem, Denver, CO 80217 USA
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Physical organic chemistry; Proton tunneling; Reaction mechanism; Single-molecule monitoring; MECHANISM; 7-HYDROXYQUINOLINE; HYDROLYSIS; REDUCTION; CHAIN;
D O I
10.1002/anie.202425097
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A central goal of chemical mechanism research is to provide a comprehensive interpretation of chemical reaction pathways to clarify the evolution patterns of reactions. In this work, we present an unprecedented comprehensive monitoring of the elementary reaction pathways of the SN1 solvolysis on an in situ real-time single-molecule electrical detection platform. Through precise control of oriented external electric fields, we capture two short-lived protonated intermediates at the single-molecule level and elucidate their roles in the reaction. Both temperature- and isotope-dependent experiments, in combination with theoretical simulations, reveal crucial roles for the hydrogen-bonded acetic-acid-mediated triple-proton-transfer and the proton tunneling effect in the interconversion of these two intermediates. This work highlights the precise manipulation of chemical reactions by electrostatic fields and opens up a universal route to discover unknown intermediates or novel phenomena in the processes of material transformation and life activities.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Single-molecule surface reaction by tunneling electrons
    Kim, Y
    Komeda, T
    Kawai, M
    SURFACE SCIENCE, 2002, 502 : 7 - 11
  • [2] Single-molecule catalysis
    Smith, Ian
    SCIENCE, 2007, 315 (5811) : 470 - 471
  • [3] Single-molecule photoredox catalysis
    Haimerl, Josef
    Ghosh, Indrajit
    Koenig, Burkhard
    Vogelsang, Jan
    Lupton, John M.
    CHEMICAL SCIENCE, 2019, 10 (03) : 681 - 687
  • [4] Single-molecule conformational mode-specific dynamics under enzymatic reaction
    Hu, DH
    Chen, Y
    Vorpagel, ER
    Lu, HP
    BIOPHYSICAL JOURNAL, 2002, 82 (01) : 139A - 140A
  • [5] An important step towards single-molecule reaction dynamics
    Yang Yang
    Wenjing Hong
    Science China(Chemistry), 2018, 61 (07) : 761 - 762
  • [6] Single-molecule protein recognition and reaction dynamics.
    Lu, HP
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 226 : U287 - U287
  • [7] An important step towards single-molecule reaction dynamics
    Yang, Yang
    Hong, Wenjing
    SCIENCE CHINA-CHEMISTRY, 2018, 61 (07) : 761 - 762
  • [8] An important step towards single-molecule reaction dynamics
    Yang Yang
    Wenjing Hong
    Science China Chemistry, 2018, 61 : 761 - 762
  • [9] INTERMITTENCY OF SINGLE-MOLECULE REACTION DYNAMICS IN FLUCTUATING ENVIRONMENTS
    WANG, J
    WOLYNES, P
    PHYSICAL REVIEW LETTERS, 1995, 74 (21) : 4317 - 4320
  • [10] Direct probing of single-molecule chemiluminescent reaction dynamics under catalytic conditions in solution
    Zhang, Ziqing
    Dong, Jinrun
    Yang, Yibo
    Zhou, Yuan
    Chen, Yuang
    Xu, Yang
    Feng, Jiandong
    NATURE COMMUNICATIONS, 2023, 14 (01)