Multi-Sequence Learning for Multiple Sclerosis Lesion Segmentation in Spinal Cord MRI

被引:1
作者
Walsh, Ricky [1 ]
Gaubert, Malo [1 ,2 ]
Meuree, Cedric [1 ]
Hussein, Burhan Rashid [1 ]
Kerbrat, Anne [1 ,3 ]
Casey, Romain [4 ]
Combes, Benoit [1 ]
Galassi, Francesca [1 ]
机构
[1] Univ Rennes, CNRS, INRIA, Empenn,INSERM,IRISA,UMR 6074, Rennes, France
[2] Rennes Univ Hosp, Dept Neuroradiol, Rennes, France
[3] Rennes Univ Hosp, Dept Neurol, Rennes, France
[4] Univ Claude Bernard Lyon 1, Univ Lyon, Fdn EDMUS,OFSEP, Ctr Rech Neurosci Lyon,Hosp Civils Lyon, Lyon, France
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT IX | 2024年 / 15009卷
关键词
Multiple Sclerosis; Missing Modality; Segmentation;
D O I
10.1007/978-3-031-72114-4_46
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automated tools developed to detect multiple sclerosis lesions in spinal cord MRI have thus far been based on processing single MR sequences in a deep learning model. This study is the first to explore a multi-sequence approach to this task and we propose a method to address inherent issues in multi-sequence spinal cord data, i.e., differing fields of view, inter-sequence alignment and incomplete sequence data for training and inference. In particular, we investigate a simple missing-modality method of replacing missing features with the mean over the available sequences. This approach leads to better segmentation results when processing a single sequence at inference than a model trained directly on that sequence, and our experiments provide valuable insights into the mechanism underlying this surprising result. In particular, we demonstrate that both the encoder and decoder benefit from the variability introduced in the multi-sequence setting. Additionally, we propose a latent feature augmentation scheme to reproduce this variability in a single-sequence setting, resulting in similar improvements over the single-sequence baseline.
引用
收藏
页码:478 / 487
页数:10
相关论文
共 13 条
[1]   Survey of automated multiple sclerosis lesion segmentation techniques on magnetic resonance imaging [J].
Danelakis, Antonios ;
Theoharis, Theoharis ;
Verganelakis, Dimitrios A. .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2018, 70 :83-100
[2]   SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data [J].
De Leener, Benjamin ;
Levy, Simon ;
Dupont, Sara M. ;
Fonov, Vladimir S. ;
Stikov, Nikola ;
Collins, D. Louis ;
Callot, Virginie ;
Cohen-Adad, Julien .
NEUROIMAGE, 2017, 145 :24-43
[3]  
Grill J.-B., 2020, ADV NEUR IN, V33, p21 271
[4]   Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks [J].
Gros, Charley ;
De Leener, Benjamin ;
Badji, Atef ;
Maranzano, Josefina ;
Eden, Dominique ;
Dupont, Sara M. ;
Talbott, Jason ;
Ren Zhuoquiong ;
Liu, Yaou ;
Granberg, Tobias ;
Ouellette, Russell ;
Tachibana, Yasuhiko ;
Hori, Masaaki ;
Kamiya, Kouhei ;
Chougar, Lydia ;
Stawiarz, Leszek ;
Hillert, Jan ;
Bannier, Ellise ;
Kerbrat, Anne ;
Edan, Gilles ;
Labauge, Pierre ;
Callot, Virginie ;
Pelletier, Jean ;
Audoin, Bertrand ;
Rasoanandrianina, Henitsoa ;
Brisset, Jean-Christophe ;
Valsasina, Paola ;
Rocca, Maria A. ;
Filippi, Massimo ;
Bakshi, Rohit ;
Tauhid, Shahamat ;
Prados, Ferran ;
Yiannakas, Marios ;
Kearney, Hugh ;
Ciccarelli, Olga ;
Smith, Seth ;
Treaba, Constantino Andrada ;
Mainero, Caterina ;
Lefeuvre, Jennifer ;
Reich, Daniel S. ;
Nair, Govind ;
Auclair, Vincent ;
McLaren, Donald G. ;
Martin, Allan R. ;
Fehlings, Michael G. ;
Vahdat, Shahabeddin ;
Khatibi, Ali ;
Doyon, Julien ;
Shepherd, Timothy ;
Charlson, Erik .
NEUROIMAGE, 2019, 184 :901-915
[5]  
Havaei Mohammad, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P469, DOI 10.1007/978-3-319-46723-8_54
[6]   A STUDY ON LOSS FUNCTIONS AND DECISION THRESHOLDS FOR THE SEGMENTATION OF MULTIPLE SCLEROSIS LESIONS ON SPINAL CORD MRI [J].
Hussein, Burhan Rashid ;
Meuree, Prime Edric ;
Gaubert, Malo ;
Masson, Arthur ;
Kerbrat, Anne ;
Combes, Benoit ;
Galassi, Francesca .
2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
[7]   nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation [J].
Isensee, Fabian ;
Jaeger, Paul F. ;
Kohl, Simon A. A. ;
Petersen, Jens ;
Maier-Hein, Klaus H. .
NATURE METHODS, 2021, 18 (02) :203-+
[8]   Advances in spinal cord imaging in multiple sclerosis [J].
Moccia, Marcello ;
Ruggieri, Serena ;
Ianniello, Antonio ;
Toosy, Ahmed ;
Pozzilli, Carlo ;
Ciccarelli, Olga .
THERAPEUTIC ADVANCES IN NEUROLOGICAL DISORDERS, 2019, 12
[9]   Observatoire Francais de la Sclerose en Plaques (OFSEP): A unique multimodal nationwide MS registry in France [J].
Vukusic, Sandra ;
Casey, Romain ;
Rollot, Fabien ;
Brochet, Bruno ;
Pelletier, Jean ;
Laplaud, David-Axel ;
De Seze, Jerome ;
Cotton, Francois ;
Moreau, Thibault ;
Stankoff, Bruno ;
Fontaine, Bertrand ;
Guillemin, Francis ;
Debouverie, Marc ;
Clanet, Michel .
MULTIPLE SCLEROSIS JOURNAL, 2020, 26 (01) :118-122
[10]   Expert Variability and Deep Learning Performance in Spinal Cord Lesion Segmentation for Multiple Sclerosis Patients [J].
Walsh, Ricky ;
Meuree, Cedric ;
Kerbrat, Anne ;
Masson, Arthur ;
Hussein, Burhan Rashid ;
Gaubert, Malo ;
Galassi, Francesca ;
Combes, Benoit .
2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS, 2023, :463-470