In this paper, we investigate a weighted overdetermined problem within the framework of Riemannian manifolds with density. Initially, by examining a Poisson problem associated with the drift Laplacian, we derive a Heintze-Karcher inequality and a soap bubble theorem that characterize geodesic balls in these spaces. Subsequently, by imposing both Dirichlet and Neumann boundary conditions, we establish a Serrin-type result in generalized cones, identifying metric balls as the unique solutions to this underlying overdetermined problem.
机构:
Univ Western Australia, Dept Math & Stat, 35 Stirling Highway, Perth, WA 6009, AustraliaUniv Western Australia, Dept Math & Stat, 35 Stirling Highway, Perth, WA 6009, Australia
Dipierro, Serena
Poggesi, Giorgio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Western Australia, Dept Math & Stat, 35 Stirling Highway, Perth, WA 6009, AustraliaUniv Western Australia, Dept Math & Stat, 35 Stirling Highway, Perth, WA 6009, Australia
Poggesi, Giorgio
Valdinoci, Enrico
论文数: 0引用数: 0
h-index: 0
机构:
Univ Western Australia, Dept Math & Stat, 35 Stirling Highway, Perth, WA 6009, AustraliaUniv Western Australia, Dept Math & Stat, 35 Stirling Highway, Perth, WA 6009, Australia
机构:
Univ Western Australia, Dept Math & Stat, 35 Stirling Highway, Perth, WA 6009, AustraliaUniv Western Australia, Dept Math & Stat, 35 Stirling Highway, Perth, WA 6009, Australia
Dipierro, Serena
Poggesi, Giorgio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Western Australia, Dept Math & Stat, 35 Stirling Highway, Perth, WA 6009, AustraliaUniv Western Australia, Dept Math & Stat, 35 Stirling Highway, Perth, WA 6009, Australia
Poggesi, Giorgio
Valdinoci, Enrico
论文数: 0引用数: 0
h-index: 0
机构:
Univ Western Australia, Dept Math & Stat, 35 Stirling Highway, Perth, WA 6009, AustraliaUniv Western Australia, Dept Math & Stat, 35 Stirling Highway, Perth, WA 6009, Australia