A Serrin's type Problem in Weighted Manifolds: Soap Bubble Results and Rigidity in Generalized Cones

被引:0
作者
Araujo, Murilo [1 ,2 ]
Freitas, Allan [1 ]
Santos, Marcio [1 ]
机构
[1] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, PB, Brazil
[2] Univ Fed Agreste Pernambuco, BR-55292278 Garanhuns, PE, Brazil
关键词
Overdetermined problem; Reilly's identity; Soap bubble theorem; Bakry-Emery Ricci curvature; ISOPERIMETRIC-INEQUALITIES; HYPERSURFACES; STABILITY;
D O I
10.1007/s11118-024-10188-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate a weighted overdetermined problem within the framework of Riemannian manifolds with density. Initially, by examining a Poisson problem associated with the drift Laplacian, we derive a Heintze-Karcher inequality and a soap bubble theorem that characterize geodesic balls in these spaces. Subsequently, by imposing both Dirichlet and Neumann boundary conditions, we establish a Serrin-type result in generalized cones, identifying metric balls as the unique solutions to this underlying overdetermined problem.
引用
收藏
页数:16
相关论文
共 36 条
  • [1] Alexandrov A.D., 1958, Amer. Math. Soc. Transl. 21. Ser. 2, V13, P412
  • [2] [Anonymous], 1981, Maximum Principles and Their Applications
  • [3] Some isoperimetric inequalities and eigenvalue estimates in weighted manifolds
    Batista, M.
    Cavalcante, M. P.
    Pyo, J.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 419 (01) : 617 - 626
  • [4] Sharp isoperimetric inequalities via the ABP
    Cabre, Xavier
    Ros-Oton, Xavier
    Serra, Joaquim
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2016, 18 (12) : 2971 - 2998
  • [5] Compact stable hypersurfaces with free boundary in convex solid cones with homogeneous densities
    Canete, Antonio
    Rosales, Cesar
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 51 (3-4) : 887 - 913
  • [6] Cheeger J., 1970, PROBLEMS ANAL S HONO, P195
  • [7] STABILITY AND COMPACTNESS FOR COMPLETE f-MINIMAL SURFACES
    Cheng, Xu
    Mejia, Tito
    Zhou, Detang
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (06) : 4041 - 4059
  • [8] Capillary surfaces in a convex cone
    Choe, Jaigyoung
    Park, Sung-Ho
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2011, 267 (3-4) : 875 - 886
  • [9] de Lima LL, 2024, Arxiv, DOI arXiv:2409.03554
  • [10] A Serrin-type problem with partial knowledge of the domain
    Dipierro, Serena
    Poggesi, Giorgio
    Valdinoci, Enrico
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 208 (208)