Explainable Machine Learning Models for Brain Diseases: Insights from a Systematic Review

被引:1
作者
Mallma, Mirko Jerber Rodriguez [1 ]
Zuloaga-Rotta, Luis [1 ]
Borja-Rosales, Ruben [1 ]
Mallma, Josef Renato Rodriguez [1 ]
Vilca-Aguilar, Marcos [2 ]
Salas-Ojeda, Maria [3 ]
Mauricio, David [4 ]
机构
[1] Univ Nacl Ingn, Fac Ingn Ind & Sistemas, Lima 15333, Peru
[2] Clin San Pablo, Inst Radiocirugia Peru, Lima 150140, Peru
[3] Univ San Ignacio Loyola, Fac Artes & Human, Lima 15024, Peru
[4] Univ Nacl Mayor San Marcos, Fac Ingn Sistemas & Informat, Lima 15081, Peru
关键词
explainable artificial intelligence (XAI); machine learning (ML); healthcare; diagnosis; prognosis; risk; brain diseases; ARTIFICIAL-INTELLIGENCE; ALZHEIMERS-DISEASE; BLACK-BOX; CLASSIFICATION; PREDICTION; DIAGNOSIS; HEMORRHAGE; SPECTRUM;
D O I
10.3390/neurolint16060098
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
In recent years, Artificial Intelligence (AI) methods, specifically Machine Learning (ML) models, have been providing outstanding results in different areas of knowledge, with the health area being one of its most impactful fields of application. However, to be applied reliably, these models must provide users with clear, simple, and transparent explanations about the medical decision-making process. This systematic review aims to investigate the use and application of explainability in ML models used in brain disease studies. A systematic search was conducted in three major bibliographic databases, Web of Science, Scopus, and PubMed, from January 2014 to December 2023. A total of 133 relevant studies were identified and analyzed out of a total of 682 found in the initial search, in which the explainability of ML models in the medical context was studied, identifying 11 ML models and 12 explainability techniques applied in the study of 20 brain diseases.
引用
收藏
页码:1285 / 1307
页数:23
相关论文
共 201 条
[1]   Convolutional neural networks to predict brain tumor grades and Alzheimer's disease with MR spectroscopic imaging data [J].
Acquarelli, Jacopo ;
van Laarhoven, Twan ;
Postma, Geert J. ;
Jansen, Jeroen J. ;
Rijpma, Anne ;
van Asten, Sjaak ;
Heerschap, Arend ;
Buydens, Lutgarde M. C. ;
Marchiori, Elena .
PLOS ONE, 2022, 17 (08)
[2]   Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI) [J].
Adadi, Amina ;
Berrada, Mohammed .
IEEE ACCESS, 2018, 6 :52138-52160
[3]   Interpretable ensemble deep learning model for early detection of Alzheimer's disease using local interpretable model-agnostic explanations [J].
Aghaei, Atefe ;
Moghaddam, Mohsen Ebrahimi ;
Malek, Hamed .
INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2022, 32 (06) :1889-1902
[4]   Machine learning can identify newly diagnosed patients with CLL at high risk of infection [J].
Agius, Rudi ;
Brieghel, Christian ;
Andersen, Michael A. ;
Pearson, Alexander T. ;
Ledergerber, Bruno ;
Cozzi-Lepri, Alessandro ;
Louzoun, Yoram ;
Andersen, Christen L. ;
Bergstedt, Jacob ;
von Stemann, Jakob H. ;
Jorgensen, Mette ;
Tang, Man-Hung Eric ;
Fontes, Magnus ;
Bahlo, Jasmin ;
Herling, Carmen D. ;
Hallek, Michael ;
Lundgren, Jens ;
MacPherson, Cameron Ross ;
Larsen, Jan ;
Niemann, Carsten U. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[5]   Gait Spatiotemporal Signal Analysis for Parkinson's Disease Detection and Severity Rating [J].
Alharthi, Abdullah S. ;
Casson, Alexander J. ;
Ozanyan, Krikor B. .
IEEE SENSORS JOURNAL, 2021, 21 (02) :1838-1848
[6]   Explainable Artificial Intelligence of Multi-Level Stacking Ensemble for Detection of Alzheimer’s Disease Based on Particle Swarm Optimization and the Sub-Scores of Cognitive Biomarkers [J].
Almohimeed, Abdulaziz ;
Saad, Redhwan M. A. ;
Mostafa, Sherif ;
El-Rashidy, Nora Mahmoud ;
Farrag, Sarah ;
Gaballah, Abdelkareem ;
Abd Elaziz, Mohamed ;
El-Sappagh, Shaker ;
Saleh, Hager .
IEEE ACCESS, 2023, 11 :123173-123193
[7]   An eXplainability Artificial Intelligence approach to brain connectivity in Alzheimer's disease [J].
Amoroso, Nicola ;
Quarto, Silvano ;
La Rocca, Marianna ;
Tangaro, Sabina ;
Monaco, Alfonso ;
Bellotti, Roberto .
FRONTIERS IN AGING NEUROSCIENCE, 2023, 15
[8]   A Comprehensive Review on Machine Learning in Healthcare Industry: Classification, Restrictions, Opportunities and Challenges [J].
An, Qi ;
Rahman, Saifur ;
Zhou, Jingwen ;
Kang, James Jin .
SENSORS, 2023, 23 (09)
[9]  
[Anonymous], Regulation-2016/679-EN-gdpr-EUR-Lex
[10]   Ethical and legal challenges of informed consent applying artificial intelligence in medical diagnostic consultations [J].
Astromske, Kristina ;
Peicius, Eimantas ;
Astromskis, Paulius .
AI & SOCIETY, 2021, 36 (02) :509-520