Adaptive Client-Dropping in Federated Learning: Preserving Data Integrity in Medical Domains

被引:0
作者
Negrao, Arthur [1 ]
Silva, Guilherme [1 ]
Pedrosa, Rodrigo [1 ]
Luz, Eduardo [1 ]
Silva, Pedro [1 ]
机构
[1] Univ Fed Ouro Preto, Dept Comp, Ouro Preto, MG, Brazil
来源
INTELLIGENT SYSTEMS, BRACIS 2024, PT I | 2025年 / 15412卷
关键词
Federated Learning; MedMNIST; Conformal Prediction; CNN;
D O I
10.1007/978-3-031-79029-4_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we address the challenge of training machine learning models on sensitive clinical data while ensuring data privacy and robustness against data corruption. Our primary contribution is an approach that integrates Conformal Prediction (CP) techniques into Federated Learning (FL) to enhance the detection and exclusion of corrupted data contributors. By implementing a client-dropping strategy based on an adaptive threshold informed by the interval width metric, we dynamically identify and exclude unreliable clients. This approach, tested using the MedMNIST dataset with a ResNet50 architecture, effectively isolates and discards corrupted inputs, maintaining the integrity and performance of the learning model. Our findings demonstrate that this strategy prevents the potential 10% decrease in accuracy that can occur without such measures, confirming the efficacy of our CP-enhanced FL methodology in ensuring robust and private data handling in sensitive domains like healthcare.
引用
收藏
页码:111 / 126
页数:16
相关论文
共 21 条
[1]  
Abad G, 2022, arXiv
[2]  
Angelopoulos AN, 2022, Arxiv, DOI [arXiv:2107.07511, DOI 10.48550/ARXIV.2107.07511]
[3]  
[Anonymous], 2001, Congresso Nacional: Lei complementar no 105
[4]  
[Anonymous], 2018, Congresso Nacional: Lei no 13.709
[5]  
Dunn P.K., 1996, J COMPUT GRAPH STAT, V5, P236, DOI DOI 10.1080/10618600.1996.10474708
[6]  
He C.., 2021, arXiv
[7]   Advances and Open Problems in Federated Learning [J].
Kairouz, Peter ;
McMahan, H. Brendan ;
Avent, Brendan ;
Bellet, Aurelien ;
Bennis, Mehdi ;
Bhagoji, Arjun Nitin ;
Bonawitz, Kallista ;
Charles, Zachary ;
Cormode, Graham ;
Cummings, Rachel ;
D'Oliveira, Rafael G. L. ;
Eichner, Hubert ;
El Rouayheb, Salim ;
Evans, David ;
Gardner, Josh ;
Garrett, Zachary ;
Gascon, Adria ;
Ghazi, Badih ;
Gibbons, Phillip B. ;
Gruteser, Marco ;
Harchaoui, Zaid ;
He, Chaoyang ;
He, Lie ;
Huo, Zhouyuan ;
Hutchinson, Ben ;
Hsu, Justin ;
Jaggi, Martin ;
Javidi, Tara ;
Joshi, Gauri ;
Khodak, Mikhail ;
Konecny, Jakub ;
Korolova, Aleksandra ;
Koushanfar, Farinaz ;
Koyejo, Sanmi ;
Lepoint, Tancrede ;
Liu, Yang ;
Mittal, Prateek ;
Mohri, Mehryar ;
Nock, Richard ;
Ozgur, Ayfer ;
Pagh, Rasmus ;
Qi, Hang ;
Ramage, Daniel ;
Raskar, Ramesh ;
Raykova, Mariana ;
Song, Dawn ;
Song, Weikang ;
Stich, Sebastian U. ;
Sun, Ziteng ;
Suresh, Ananda Theertha .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2021, 14 (1-2) :1-210
[8]  
Karimi H., 2023, Proceedings of the AAAI Symposium Series, V1, P142
[9]   Federated Learning on Clinical Benchmark Data: Performance Assessment [J].
Lee, Geun Hyeong ;
Shin, Soo-Yong .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2020, 22 (10)
[10]   Auto-weighted Robust Federated Learning with Corrupted Data Sources [J].
Li, Shenghui ;
Ngai, Edith ;
Ye, Fanghua ;
Voigt, Thiemo .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2022, 13 (05)