The choice of 16S rRNA gene sequence analysis impacted characterization of highly variable surface microbiota in dairy processing environments

被引:0
作者
Daly, Sarah E. [1 ]
Feng, Jingzhang [1 ]
Daeschel, Devin [1 ]
Kovac, Jasna [2 ]
Snyder, Abigail B. [1 ]
机构
[1] Cornell Univ, Dept Food Sci, Ithaca, NY 14850 USA
[2] Penn State Univ, Dept Food Sci, University Pk, PA USA
关键词
dairy processing environments; bioinformatics; food safety; amplicon sequencing; microbial ecology; CHEESE; COMMUNITIES; BACTERIA; SAFETY;
D O I
10.1128/msystems.00620-24
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Accurate knowledge of the microbiota collected from surfaces in food processing environments is important for food quality and safety. This study assessed discrepancies in taxonomic composition and alpha and beta diversity values generated from eight different bioinformatic workflows for the analysis of 16S rRNA gene sequences extracted from the microbiota collected from surfaces in dairy processing environments. We found that the microbiota collected from environmental surfaces varied widely in density (0-9.09 log(10) CFU/cm(2)) and Shannon alpha diversity (0.01-3.40). Consequently, depending on the sequence analysis method used, characterization of low-abundance genera (i.e., below 1% relative abundance) and the number of genera identified (114-173 genera) varied considerably. Some low-abundance genera, including Listeria, varied between the amplicon sequence variant (ASV) and operational taxonomic unit (OTU) methods. Centered log-ratio transformation inflated alpha and beta diversity values compared to rarefaction. Furthermore, the ASV method also inflated alpha and beta diversity values compared to the OTU method (P < 0.05). Therefore, for sparse, uneven, low-density data sets, the OTU method and rarefaction are better for taxonomic and ecological characterization of surface microbiota.
引用
收藏
页数:17
相关论文
共 56 条
[1]  
[Anonymous], 2022, RStudio: Integrated Development for R (Version 2022.7.1.554)
[2]   Facility-Specific "House" Microbiome Drives Microbial Landscapes of Artisan Cheesemaking Plants [J].
Bokulich, Nicholas A. ;
Mills, David A. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2013, 79 (17) :5214-5223
[3]   Impact of cleaning and disinfection procedures on microbial ecology and Salmonella antimicrobial resistance in a pig slaughterhouse [J].
Bridier, Arnaud ;
Le Grandois, Patricia ;
Moreau, Marie-Helene ;
Prenom, Charleyne ;
Le Roux, Alain ;
Feurer, Carole ;
Soumet, Christophe .
SCIENTIFIC REPORTS, 2019, 9 (1)
[4]  
Callahan BJ, 2016, NAT METHODS, V13, P581, DOI [10.1038/nmeth.3869, 10.1038/NMETH.3869]
[5]   Metagenomic characterization of bacterial biofilm in four food processing plants in Colombia [J].
Caraballo Guzman, Arley ;
Gonzalez Hurtado, Maria Isabel ;
Cuesta-Astroz, Yesid ;
Torres, Giovanny .
BRAZILIAN JOURNAL OF MICROBIOLOGY, 2020, 51 (03) :1259-1267
[6]   Changing self-concept in the time of COVID-19: a close look at physician reflections on social media [J].
Chiam, Min ;
Ho, Chong Yao ;
Quah, Elaine ;
Chua, Keith Zi Yuan ;
Ng, Caleb Wei Hao ;
Lim, Elijah Gin ;
Tan, Javier Rui Ming ;
Wong, Ruth Si Man ;
Ong, Yun Ting ;
Soong, Yoke Lim ;
Kwek, Jin Wei ;
Yong, Wei Sean ;
Loh, Kiley Wei Jen ;
Lim, Crystal ;
Mason, Stephen ;
Krishna, Lalit Kumar Radha .
PHILOSOPHY ETHICS AND HUMANITIES IN MEDICINE, 2022, 17 (01)
[7]   Ecological Observations Based on Functional Gene Sequencing Are Sensitive to the Amplicon Processing Method [J].
Cholet, Fabien ;
Lisik, Agata ;
Agogue, Helene ;
Ijaz, Umer Z. ;
Pineau, Philippe ;
Lachaussee, Nicolas ;
Smith, Cindy J. .
MSPHERE, 2022, 7 (04)
[8]   Low-Abundant Microorganisms: The Human Microbiome's Dark Matter, a Scoping Review [J].
de Cena, Jessica Alves ;
Zhang, Jianying ;
Deng, Dongmei ;
Dame-Teixeira, Naile ;
Do, Thuy .
FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2021, 11
[9]   Environmental microbiome mapping as a strategy to improve quality and safety in the food industry [J].
De Filippis, Francesca ;
Valentino, Vincenzo ;
Alvarez-Ordonez, Avelino ;
Cotter, Paul D. ;
Ercolini, Danilo .
CURRENT OPINION IN FOOD SCIENCE, 2021, 38 :168-176
[10]   Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB [J].
DeSantis, T. Z. ;
Hugenholtz, P. ;
Larsen, N. ;
Rojas, M. ;
Brodie, E. L. ;
Keller, K. ;
Huber, T. ;
Dalevi, D. ;
Hu, P. ;
Andersen, G. L. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2006, 72 (07) :5069-5072