The Conditional Autoregressive F-Riesz Model for Realized Covariance Matrices

被引:0
作者
Opschoor, Anne [1 ,2 ]
Lucas, Andre [2 ,3 ]
Rossini, Luca [4 ,5 ]
机构
[1] Vrije Univ Amsterdam, Dept Finance, De Boelelaan 1105, NL-1081 HV Amsterdam, Netherlands
[2] Tinbergen Inst, Gustav Mahlerpl 117, NL-1082 MS Amsterdam, Netherlands
[3] Vrije Univ Amsterdam, Dept Econometr, NL-1081 HV Amsterdam, Netherlands
[4] Univ Milan, Dept Econ Management & Quantitat Methods, I-20122 Milan, Italy
[5] Fdn Eni Enrico Mattei, Milan, Italy
基金
美国国家科学基金会;
关键词
covariance matrix distributions; tail heterogeneity; (Inverse) Riesz distribution; fat-tails; realized covariance matrices; C32; C58; G17; ECONOMETRIC-ANALYSIS; HIGH-FREQUENCY; DENSITY FORECASTS; ECONOMIC VALUE; KERNELS;
D O I
10.1093/jjfinec/nbae023
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We introduce a new model for the dynamics of fat-tailed (realized) covariance-matrix-valued time-series using the F-Riesz distribution. The model allows for heterogeneous tail behavior across the coordinates of the covariance matrix via two vector-valued degrees of freedom parameters, thus generalizing the familiar Wishart and matrix-F distributions. We show that the filter implied by the new model is invertible and that a two-step targeted maximum likelihood estimator is consistent. Applying the new F-Riesz model to U.S. stocks, both tail heterogeneity and tail fatness turn out to be empirically relevant: they produce significant in-sample and out-of-sample likelihood increases, ex-post portfolio standard deviations that are in the global minimum variance model confidence set, and economic differences that are either in favor of the new model or competitive with a range of benchmark models.
引用
收藏
页数:29
相关论文
共 49 条
  • [1] Comparing density forecasts via weighted likelihood ratio tests
    Amisano, Gianni
    Giacomini, Raffaella
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2007, 25 (02) : 177 - 190
  • [2] Modeling and forecasting realized volatility
    Andersen, TG
    Bollerslev, T
    Diebold, FX
    Labys, P
    [J]. ECONOMETRICA, 2003, 71 (02) : 579 - 625
  • [3] Anderson T.W., 2003, An Introduction to Multivariate Statistical Analysis, Vthird
  • [4] On Riesz and Wishart distributions associated with decomposable undirected graphs
    Andersson, Steen A.
    Klein, Thomas
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (04) : 789 - 810
  • [5] Macroeconomic forecasting and variable ordering in multivariate stochastic volatility models
    Arias, Jonas E.
    Rubio-Ramirez, Juan F.
    Shin, Minchul
    [J]. JOURNAL OF ECONOMETRICS, 2023, 235 (02) : 1054 - 1086
  • [6] Realized kernels in practice: trades and quotes
    Barndorff-Nielsen, O. E.
    Hansen, P. Reinhard
    Lunde, A.
    Shephard, N.
    [J]. ECONOMETRICS JOURNAL, 2009, 12 (03) : C1 - C32
  • [7] Econometric analysis of realized covariation: High frequency based covariance, regression, and correlation in financial economics
    Barndorff-Nielsen, OE
    Shephard, N
    [J]. ECONOMETRICA, 2004, 72 (03) : 885 - 925
  • [8] Realized Semicovariances
    Bollerslev, Tim
    Li, Jia
    Patton, Andrew J.
    Quaedvlieg, Rogier
    [J]. ECONOMETRICA, 2020, 88 (04) : 1515 - 1551
  • [9] Modeling and forecasting (un)reliable realized covariances for more reliable financial decisions
    Bollerslev, Tim
    Patton, Andrew J.
    Quaedvlieg, Rogier
    [J]. JOURNAL OF ECONOMETRICS, 2018, 207 (01) : 71 - 91
  • [10] Financial econometric analysis at ultra-high frequency: Data handling concerns
    Brownlees, C. T.
    Gallo, G. M.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (04) : 2232 - 2245