Modifications of Microstates in Resting-State EEG Associated to Cognitive Decline in Early Alzheimer's Disease Assessed by a Machine Learning Approach

被引:1
作者
Perpetuini, David [1 ]
Croce, Pierpaolo [2 ]
Chiarelli, Antonio Maria [2 ]
Cardone, Daniela [1 ]
Zappasodi, Filippo [2 ]
Merla, Arcangelo [1 ]
机构
[1] Univ G dAnnunzio, Dept Engn & Geol, Pescara, Italy
[2] Univ G dAnnunzio, Dept Neurosci Imaging & Clin Sci, Chieti, Italy
来源
ADVANCES IN DIGITAL HEALTH AND MEDICAL BIOENGINEERING, VOL 2, EHB-2023 | 2024年 / 110卷
关键词
Alzheimer's Disease (AD); Electroencephalography (EEG); Microstates; Resting State; Mini-Mental Test; Support Vector Regression (SVR); ELECTRICAL-FIELDS; DEMENTIA; MILD; SEGMENTATION; IMPAIRMENT; DIAGNOSIS;
D O I
10.1007/978-3-031-62520-6_32
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Electroencephalography (EEG) is a neuroimaging technique able to measure the brain electrical activity. The spontaneous cerebral activity at rest exhibits dynamic alterations of brain states called functional microstates. It is well known that EEG microstates are altered in Alzheimer's disease (AD), suggesting that EEG microstates might be indicative of the cognitive decline associated with AD. The present study investigated the capabilities of a machine learning (ML) approach to predict the Mini-Mental Score (MMSE) of AD patients and healthy controls (HC) from the EEG microstates parameters. Furthermore, a classification of AD and HC was implemented with a Receiver Operating Curve (ROC) employing the predicted MMSE score of the ML framework as input. The correlation coefficient between the MMSE and the multivariate metric estimated by the ML approach was 0.53. Furthermore, the area under the ROC Curve was 0.80 in discriminating AD from HC. The results demonstrated that EEG microstates may represent a powerful tool for clinical evaluation of cognitive decline in early AD.
引用
收藏
页码:275 / 282
页数:8
相关论文
共 40 条
[1]   Toxic tau: structural origins of tau aggregation in Alzheimer's disease [J].
Al Mamun, Abdullah ;
Uddin, Md Sahab ;
Mathew, Bijo ;
Ashraf, Ghulam Md .
NEURAL REGENERATION RESEARCH, 2020, 15 (08) :1417-1420
[2]  
Alsunusi S., 2020, Arch. Physiol. Biochem. Biochem., V128, P1
[3]  
Awad M., 2015, Efficient learning machines: theories, concepts, and applications for engineers and system designers, DOI DOI 10.1007/978-1-4302-5990-9_4
[4]   BOLD correlates of EEG topography reveal rapid resting-state network dynamics [J].
Britz, Juliane ;
Van De Ville, Dimitri ;
Michel, Christoph M. .
NEUROIMAGE, 2010, 52 (04) :1162-1170
[5]   Evidence of Neurovascular Un-Coupling in Mild Alzheimer's Disease through Multimodal EEG-fNIRS and Multivariate Analysis of Resting-State Data [J].
Chiarelli, Antonio M. ;
Perpetuini, David ;
Croce, Pierpaolo ;
Filippini, Chiara ;
Cardone, Daniela ;
Rotunno, Ludovica ;
Anzoletti, Nelson ;
Zito, Michele ;
Zappasodi, Filippo ;
Merla, Arcangelo .
BIOMEDICINES, 2021, 9 (04)
[6]   Fiberless, Multi-Channel fNIRS-EEG System Based on Silicon Photomultipliers: Towards Sensitive and Ecological Mapping of Brain Activity and Neurovascular Coupling [J].
Chiarelli, Antonio Maria ;
Perpetuini, David ;
Croce, Pierpaolo ;
Greco, Giuseppe ;
Mistretta, Leonardo ;
Rizzo, Raimondo ;
Vinciguerra, Vincenzo ;
Romeo, Mario Francesco ;
Zappasodi, Filippo ;
Merla, Arcangelo ;
Fallica, Pier Giorgio ;
Edlinger, Guenter ;
Ortner, Rupert ;
Giaconia, Giuseppe Costantino .
SENSORS, 2020, 20 (10)
[7]   Deep Convolutional Neural Networks for Feature-Less Automatic Classification of Independent Components in Multi-Channel Electrophysiological Brain Recordings [J].
Croce, Pierpaolo ;
Zappasodi, Filippo ;
Marzetti, Laura ;
Merla, Arcangelo ;
Pizzella, Vittorio ;
Chiarelli, Antonio Maria .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2019, 66 (08) :2372-2380
[8]  
Davidson R.J., 2000, Human electroencephalography
[9]   Estimation of Heart Rate Variability Parameters by Machine Learning Approaches Applied to Facial Infrared Thermal Imaging [J].
Di Credico, Andrea ;
Perpetuini, David ;
Izzicupo, Pascal ;
Gaggi, Giulia ;
Cardone, Daniela ;
Filippini, Chiara ;
Merla, Arcangelo ;
Ghinassi, Barbara ;
Di Baldassarre, Angela .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
[10]   EEG-microstates in mild memory impairment and Alzheimer's disease: Possible association with disturbed information processing [J].
Dierks, T ;
Jelic, V ;
Julin, P ;
Maurer, K ;
Wahlund, LO ;
Almkvist, O ;
Strik, WK ;
Winblad, B .
JOURNAL OF NEURAL TRANSMISSION, 1997, 104 (4-5) :483-495