Nucleic Acid Conjugates: Unlocking Therapeutic Potential

被引:0
作者
Kashyap, Disha [1 ]
Booth, Michael J. [1 ,2 ]
机构
[1] Univ Oxford, Dept Chem, Oxford OX1 3TA, England
[2] UCL, Dept Chem, London WC1H 0AJ, England
来源
ACS BIO & MED CHEM AU | 2024年 / 5卷 / 01期
基金
英国工程与自然科学研究理事会; 英国惠康基金;
关键词
Nucleic acid therapeutics; antisense oligonucleotides; small interfering RNA; aptamers; splice switching; gene knockdown; bioconjugation; cell delivery; cell targeting; targeted activation; ANTISENSE OLIGONUCLEOTIDES; INTRACELLULAR DELIVERY; MORPHOLINO OLIGOMERS; RNA INTERFERENCE; IN-VITRO; GENE; SIRNA; ANALOGS; PHARMACOKINETICS; APTAMER;
D O I
10.1021/acsbiomedchemau.4c00092
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nucleic acids have emerged as a powerful class of therapeutics. Through simple base pair complementarity, nucleic acids allow the targeting of a variety of pathologically relevant proteins and RNA molecules. However, despite the preliminary successes of nucleic acids as drugs in the clinic, limited biodistribution, inadequate delivery mechanisms, and target engagement remain key challenges in the field. A key area of research has been the chemical optimization of nucleic acid backbones to significantly enhance their "drug-like" properties. Alternatively, this review focuses on the next generation of nucleic acid chemical modifications: covalent biochemical conjugates. These conjugates are being applied to improve the delivery, functionality, and targeting. Exploiting research on heterobifunctionals, such as PROTACs, RIBOTACs, molecular glues, etc., has the potential to dramatically expand nucleic acid drug functionality and target engagement capabilities. Such next-generation chemistry-based enhancements have the potential to unlock nucleic acids as effective and versatile therapeutic agents.
引用
收藏
页码:3 / 15
页数:13
相关论文
共 122 条
  • [31] Summerton J.E., Invention and Early History of Morpholinos: From Pipe Dream to Practical Products, Morpholino Oligomers, 1565, pp. 1-15, (2017)
  • [32] Summerton J., Weller D., Morpholino Antisense Oligomers: Design, Preparation, and Properties, Antisense and Nucleic Acid Drug Development, 7, 3, pp. 187-195, (1997)
  • [33] Le B.T., Paul S., Jastrzebska K., Langer H., Caruthers M.H., Veedu R.N., Thiomorpholino oligonucleotides as a robust class of next generation platforms for alternate mRNA splicing, Proc. Natl. Acad. Sci. U. S. A., 119, 36, (2022)
  • [34] Sorensen M.D., Kvaerno L., Bryld T., Hakansson A.E., Verbeure B., Gaubert G., Herdewijn P., Wengel J., alpha-L-ribo-configured locked nucleic acid (alpha-L-LNA): synthesis and properties, J. Am. Chem. Soc., 124, 10, pp. 2164-2176, (2002)
  • [35] Eoff R.L., McGrath C.E., Maddukuri L., Salamanca-Pinzon S.G., Marquez V.E., Marnett L.J., Guengerich F.P., Egli M., Selective Modulation of DNA Polymerase Activity by Fixed-Conformation Nucleoside Analogues, Angew. Chem., 122, 41, pp. 7643-7647, (2010)
  • [36] Relizani K., Griffith G., Echevarria L.A., Zarrouki F., Facchinetti P., Vaillend C., Leumann C., Garcia L., Goyenvalle A.L., Efficacy and Safety Profile of Tricyclo-DNA Antisense Oligonucleotides in Duchenne Muscular Dystrophy Mouse Model, Molecular Therapy - Nucleic Acids, 8, pp. 144-157, (2017)
  • [37] Furukawa Y., Kobayashi K., Kanai Y., Honjo M., Synthesis of 2’-O-methyluridine, 2’-O-methylcytidine and their relating compounds, Chemical & pharmaceutical bulletin, 13, 11, pp. 1273-1278, (1965)
  • [38] Liu P., Sharon A., Chu C.K., Fluorinated Nucleosides: Synthesis and Biological Implication, J. Fluor Chem., 129, 9, pp. 743-766, (2008)
  • [39] Aboshi M., Matsuda K., Kawakami D., Kono K., Kazami Y., Sekida T., Komori M., Morey A.L., Suga S., Smith J.F., Safety and immunogenicity of VLPCOV-02, a SARS-CoV-2 self-amplifying RNA vaccine with a modified base, 5-methylcytosine, iScience, 27, 2, (2024)
  • [40] Koizumi M., Morita K., Daigo M., Tsutsumi S., Abe K., Obika S., Imanishi T., Triplex formation with 2’-O,4’-C-ethylene-bridged nucleic acids (ENA) having C3′-endo conformation at physiological pH, Nucleic Acids Res., 31, 12, pp. 3267-3273, (2003)