Artificial intelligence-driven electrocardiography: Innovations in hypertrophic cardiomyopathy management

被引:1
作者
Ordine, Leopoldo [1 ]
Canciello, Grazia [1 ]
Borrelli, Felice [1 ]
Lombardi, Raffaella [1 ]
Di Napoli, Salvatore [1 ]
Polizzi, Roberto [1 ]
Falcone, Cristina [1 ]
Napolitano, Brigida [1 ]
Moscano, Lorenzo [1 ]
Spinelli, Alessandra [1 ]
Masciari, Elio [2 ]
Esposito, Giovanni [1 ]
Losi, Maria-Angela [1 ]
机构
[1] Univ Federico II, Dept Adv Biomed Sci, Via S Pansini 5, I-80131 Naples, Italy
[2] Univ Federico II, Dept Elect Engn & Informat Technol, Naples, Italy
关键词
NEURAL-NETWORK; MODELS;
D O I
10.1016/j.tcm.2024.08.002
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Hypertrophic Cardiomyopathy (HCM) presents a complex diagnostic and prognostic challenge due to its heterogeneous phenotype and clinical course. Artificial Intelligence (AI) and Machine Learning (ML) techniques hold promise in transforming the role of Electrocardiography (ECG) in HCM diagnosis, prognosis, and management. AI, including Deep Learning (DL), enables computers to learn patterns from data, allowing for the development of models capable of analyzing ECG signals. DL models, such as convolutional neural networks, have shown promise in accurately identifying HCM-related abnormalities in ECGs, surpassing traditional diagnostic methods. In diagnosing HCM, ML models have demonstrated high accuracy in distinguishing between HCM and other cardiac conditions, even in cases with normal ECG findings. Additionally, AI models have enhanced risk assessment by predicting arrhythmic events leading to sudden cardiac death and identifying patients at risk for atrial fibrillation and heart failure. These models incorporate clinical and imaging data, offering a comprehensive evaluation of patient risk profiles. Challenges remain, including the need for larger and more diverse datasets to improve model generalizability and address imbalances inherent in rare event prediction. Nevertheless, AI-driven approaches have the potential to revolutionize HCM management by providing timely and accurate diagnoses, prognoses, and personalized treatment strategies based on individual patient risk profiles. This review explores the current landscape of AI applications in ECG analysis for HCM, focusing on advancements in AI methodologies and their specific implementation in HCM care. (c) 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
引用
收藏
页码:126 / 134
页数:9
相关论文
共 35 条
  • [1] Next Generation ECG: The Impact of Artificial Intelligence and Machine Learning
    Adasuriya, Gamith
    Haldar, Shouvik
    [J]. CURRENT CARDIOVASCULAR RISK REPORTS, 2023, 17 (08) : 143 - 154
  • [2] Ahluwalia Monica, 2023, JACC Adv, V2, P100562, DOI 10.1016/j.jacadv.2023.100562
  • [3] Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging
    Al'Aref, Subhi J.
    Anchouche, Khalil
    Singh, Gurpreet
    Slomka, Piotr J.
    Kolli, Kranthi K.
    Kumar, Amit
    Pandey, Mohit
    Maliakal, Gabriel
    van Rosendael, Alexander R.
    Beecy, Ashley N.
    Berman, Daniel S.
    Leipsic, Jonathan
    Nieman, Koen
    Andreini, Daniele
    Pontone, Gianluca
    Schoepf, U. Joseph
    Shaw, Leslee J.
    Chang, Hyuk-Jae
    Narula, Jagat
    Bax, Jeroen J.
    Guan, Yuanfang
    Min, James K.
    [J]. EUROPEAN HEART JOURNAL, 2019, 40 (24) : 1975 - +
  • [4] 2023 ESC Guidelines for the management of cardiomyopathies Developed by the task force on the management of cardiomyopathies of the European Society of Cardiology (ESC)
    Arbelo, Elena
    Protonotarios, Alexandros
    Gimeno, Juan R.
    Arbustini, Eloisa
    Barriales-Villa, Roberto
    Basso, Cristina
    Bezzina, Connie R.
    Biagini, Elena
    Blom, Nico A.
    de Boer, Rudolf A.
    De Winter, Tim
    Elliott, Perry M.
    Flather, Marcus
    Garcia-Pavia, Pablo
    Haugaa, Kristina H.
    Ingles, Jodie
    Jurcut, Ruxandra Oana
    Klaassen, Sabine
    Limongelli, Giuseppe
    Loeys, Bart
    Mogensen, Jens
    Olivotto, Iacopo
    Pantazis, Antonis
    Sharma, Sanjay
    Van Tintelen, J. Peter
    Ware, James S.
    Kaski, Juan Pablo
    [J]. EUROPEAN HEART JOURNAL, 2023, 44 (37) : 3503 - 3626
  • [5] Application of artificial intelligence to the electrocardiogram
    Attia, Zachi, I
    Harmon, David M.
    Behr, Elijah R.
    Friedman, Paul A.
    [J]. EUROPEAN HEART JOURNAL, 2021, 42 (46) : 4717 - +
  • [6] Clinical prediction of genotypes in hypertrophic cardiomyopathy: A systematic review
    Aziz, Amir
    Musiol, Szymon K.
    Moody, William E.
    Pickup, Luke
    Cooper, Rob
    Lip, Gregory Y. H.
    [J]. EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2021, 51 (08)
  • [7] Sarcomeric versus Non-Sarcomeric HCM
    Borrelli, Felice
    Losi, Maria Angela
    Canciello, Grazia
    Todde, Gaetano
    Perillo, Errico Federico
    Ordine, Leopoldo
    Frisso, Giulia
    Esposito, Giovanni
    Lombardi, Raffaella
    [J]. CARDIOGENETICS, 2023, 13 (02) : 92 - 105
  • [8] Identification of high-risk imaging features in hypertrophic cardiomyopathy using electrocardiography: A deep-learning approach
    Carrick, Richard T.
    Ahamed, Hisham
    Sung, Eric
    Maron, Martin S.
    Madias, Christopher
    Avula, Vennela
    Studley, Rachael
    Bao, Chen
    Bokhari, Nadia
    Quintana, Erick
    Rajesh-kannan, Ramiah
    Maron, Barry J.
    Wu, Katherine C.
    Rowin, Ethan J.
    [J]. HEART RHYTHM, 2024, 21 (08) : 1390 - 1397
  • [9] Deep learning-derived 12-lead electrocardiogram-based genotype prediction for hypertrophic cardiomyopathy: a pilot study
    Chen, LaiTe
    Fu, GuoSheng
    Jiang, ChenYang
    [J]. ANNALS OF MEDICINE, 2023, 55 (01)
  • [10] A Multicenter Evaluation of the Impact of Therapies on Deep Learning-Based Electrocardiographic Hypertrophic Cardiomyopathy Markers
    Dhingra, Lovedeep S.
    Sangha, Veer
    Aminorroaya, Arya
    Bryde, Robyn
    Gaballa, Andrew
    Ali, Adel H.
    Mehra, Nandini
    Krumholz, Harlan M.
    Sen, Sounok
    Kramer, Christopher M.
    Martinez, Matthew W.
    Desai, Milind Y.
    Oikonomou, Evangelos K.
    Khera, Rohan
    [J]. AMERICAN JOURNAL OF CARDIOLOGY, 2025, 237 : 35 - 40