Maximal L 1-regularity of the Navier-Stokes equations with free boundary conditions via a generalized semigroup theory

被引:0
作者
Shibata, Yoshihiro [1 ,2 ]
Watanabe, Keiichi [3 ]
机构
[1] Waseda Univ, 3-4-1 Ohkubo,Shinjuku Ku, Tokyo 1698555, Japan
[2] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA USA
[3] Suwa Univ Sci, Sch Gen & Management Studies, 5000-1 Toyohira, Nagano 3910292, Japan
关键词
Navier-Stokes equations; Free boundary problem; Maximal L 1-regularity; SURFACE; SPACES; MULTIPLIERS; REGULARITY; OPERATORS;
D O I
10.1016/j.jde.2025.01.060
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper develops a new approach to show the maximal regularity theorem of the Stokes equations with free boundary conditions in the half-space Rd<INF>+</INF>, d >= 2, within the L <INF>1</INF>-in-time and Bs<INF>q,1</INF>-in-space framework with (q, s) satisfying 1 1 + 1/q 1/q, where ta sq, 1 stands for either homogeneous or inhomogeneous Besov spaces. In particular, we establish a generalized semigroup theory within an L <INF>1</INF>- in-time and Bs<INF>q,1</INF>-in-space framework, which extends a classical C <INF>0</INF>-analytic semigroup theory to the case of inhomogeneous boundary conditions. The maximal L <INF>1</INF>-regularity theorem is proved by estimating the Fourier-Laplace inverse transform of the solution to the generalized Stokes resolvent problem with in- homogeneous boundary conditions, where density and interpolation arguments are used. The maximal L<INF> 1</INF>-regularity theorem is applied to show the unique existence of a local strong solution to the Navier- Stokes equations with free boundary conditions for arbitrary initial data a in Bs<INF>q,1</INF> (R d<INF>+</INF> ) d , where q and s satisfy d - 1 < q <= d and - 1 + d/q < s < 1/q, respectively. If we assume that the initial data a are small in B center dot - 1 +d/q <INF>q, 1</INF> (Rd<INF>+</INF>)d , d - 1 < q < 2d, then the unique existence of a global strong solution to the system is proved. (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:495 / 605
页数:111
相关论文
共 44 条
[1]   Global existence for an nonhomogeneous fluid [J].
Abidi, Hammadi ;
Paicu, Marius .
ANNALES DE L INSTITUT FOURIER, 2007, 57 (03) :883-917
[2]  
ADAMS R. A., 2003, Sobolev spaces, V140
[3]  
Amann H, 1997, MATH NACHR, V186, P5
[4]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7
[6]  
Bergh J., 1976, Interpolation spaces. An introduction
[7]   REALIZATIONS OF HOMOGENEOUS BESOV-SPACES [J].
BOURDAUD, G .
ARKIV FOR MATEMATIK, 1988, 26 (01) :41-54
[8]  
Danchin R., 2025, Mem. Am. Math. Soc
[9]  
Danchin R, 2015, MEM SOC MATH FR, P1
[10]  
DAPRATO G, 1975, J MATH PURE APPL, V54, P305