Impact of Carbonization Temperature on the Structure and Li Deposition Behavior of 3D Dual Metal Carbon Fibers

被引:0
|
作者
Schmidt, Dana [1 ,2 ]
Schoener, Sandro [1 ,2 ]
Steinhoff, Michael K. [1 ,2 ]
Schierholz, Roland [1 ]
Steinhauer, Kevin [1 ]
Thomas Daniel, Davis [1 ]
Speer, Sebastian [1 ,2 ]
Kretzschmar, Ansgar [1 ]
Jeschull, Fabian [3 ]
Windmueller, Anna [1 ]
Tsai, Chih-Long [1 ]
Tempel, Hermann [1 ]
Yu, Shicheng [1 ]
Eichel, Ruediger-A. [1 ,2 ,4 ]
机构
[1] Forschungszentrum Julich, Inst Energy Technol Fundamental Electrochem IET 1, D-52428 Julich, Germany
[2] Rhein Westfal TH Aachen, Mat & Proc Electrochem Energy Storage & Convers, D-52074 Aachen, Germany
[3] Karlsruhe Inst Technol KIT, Inst Appl Mat Energy Storage Syst IAM ESS, D-76344 Eggenstein leopoldshafen, Germany
[4] Forschungszentrum Julich, Inst Energy Mat & Devices, Helmholtz Inst Munster Ion Energy Storage IMD-4 HI, D-48149 Munster, Germany
来源
SMALL STRUCTURES | 2024年
关键词
3D interlayer; carbonization temperature; current collector modification; Li deposition; lithiophilic-lithiophobic gradient; FREE LITHIUM METAL; CURRENT COLLECTOR; ANODE; COPPER; SILVER; CONDUCTIVITY; SPECTROSCOPY;
D O I
10.1002/sstr.202400311
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li deposition within lithiophilic-lithiophobic metal carbon fibers is influenced by several structural factors, including electrical conductivity, surface-bound functional groups, particle size and distribution of the lithiophilic-lithiophobic components, which are significantly affected by the carbonization temperature. To gain a deeper understanding of how these different parameters affect the Li deposition behavior, a detailed analysis of Ag and Cu containing carbon fibers at carbonization temperatures from 500 to 1000 degrees C is performed. At lower carbonization temperatures, the fibers exhibit an unordered carbon structure with a high concentration of heteroatoms and a lithiophilic-lithiophobic gradient. However, the high electrical resistance at these temperatures impedes Li-ion interaction with the fibers, leading to the formation of mossy and dead Li. In contrast, higher carbonization temperatures result in the removal of heteroatoms and a more ordered carbon structure. The agglomeration of Cu and Ag particles at these temperatures disrupts the lithiophilic-lithiophobic gradient, causing concentrated Li deposition on top of the fibers. A threshold temperature of 700 degrees C has been identified for achieving homogeneous Li deposition. At this temperature, the lithiophilic-lithiophobic gradient still exists, and the more ordered carbon structure enhances Li-ion interaction with the fibers, resulting in stable Li deposition for over 1100 h. A detailed investigation of the structural evolution of 3D lithiophilic (Ag)-lithiophobic (Cu) carbon fibers at different carbonization temperatures and the corresponding correlation between the structural features and Li deposition is performed. Particular emphasis is placed on understanding how changes in the carbon structure, along with the size and distribution of the metal particles, influence the Li deposition behavior.image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Selective Lithium Deposition on 3D Porous Heterogeneous Lithiophilic Skeleton for Ultrastable Lithium Metal Anodes
    Liu, Tiancun
    Chen, Xiudong
    Zhan, Changchao
    Cao, Xiaohua
    Wang, Yawei
    Liu, Jin-Hang
    CHEMNANOMAT, 2020, 6 (08) : 1200 - 1207
  • [32] Study of distorted octahedral structure in 3d transition metal complexes using XAFS
    Gaur, A.
    Nair, N. Nitin
    Shrivastava, B. D.
    Das, B. K.
    Chakrabortty, Monideepa
    Jha, S. N.
    Bhattacharyya, D.
    CHEMICAL PHYSICS LETTERS, 2018, 692 : 382 - 387
  • [33] Micrometer-sized 3D porous structure decorated with uniform InSb alloy layer towards dendrite-free Li metal electrode
    Wang, Shuai
    Liu, Chaozhen
    Zhao, Mingqin
    Song, Rui
    Lu, Yao
    Gou, Lei
    Gong, Feng
    Fan, Xiaoyong
    Li, Donglin
    JOURNAL OF POWER SOURCES, 2024, 614
  • [34] A 3D Porous Inverse Opal Ni Structure on a Cu Current Collector for Stable Lithium-Metal Batteries
    Jeong, Soo Min
    Wu, Mihye
    Kim, Tae Yeong
    Kim, Dong Hwan
    Kim, Se-Hee
    Choi, Hong Kyoon
    Kang, Yun Chan
    Kim, Do Youb
    BATTERIES & SUPERCAPS, 2022, 5 (03)
  • [35] A 3D Lithiophilic Host for Dendrite-Free Lithium Metal Anode via One-Step Carbonization of an Energetic Metal-Organic Framework
    Song, Manrong
    Li, Yang
    Gao, Lei
    Zhao, Ruo
    Xu, Yifan
    Han, Songbai
    Zhu, Jinlong
    Wang, Liping
    Zhao, Yusheng
    SMALL, 2024, 20 (09)
  • [36] Self-Adaptive 3D Skeleton with Charge Dissipation Capability for Practical Li Metal Pouch Cells
    Hu, Zhiyuan
    Deng, Wei
    He, Bangyi
    Liang, Jianhua
    Zhou, Xufeng
    Liu, Zhaoping
    NANO ENERGY, 2022, 93
  • [37] In Situ Formation of Bifunctional Interlayer on 3D Conductive Scaffold for Dendrite-Free Li Metal Batteries
    Kim, Yonghwan
    Kim, Dohyeong
    Bae, Minjun
    Chang, Yujin
    An, Won Young
    Hong, Hwichan
    Hwang, Seon Jae
    Kim, Dongwan
    Lee, Jeongyeon
    Piao, Yuanzhe
    ENERGY & ENVIRONMENTAL MATERIALS, 2025,
  • [38] Stable Li-metal Depositon on Lithiophilic 3D CuO Nanosheet-decorated Cu Mesh
    Li Rui
    Wang Hao
    Fu Qiang
    Tian Ziyu
    Wang Jianxu
    Ma Xiaojian
    Yang Jian
    Qian Yitai
    JOURNAL OF INORGANIC MATERIALS, 2020, 35 (08) : 882 - +
  • [39] "Three in one" 3D mixed skeleton design enables dendrite-free Li metal batteries
    Diao, Wan-Yue
    Xie, Dan
    Wang, Ying-Yu
    Tao, Fang-Yu
    Liu, Chang
    Wu, Xing-Long
    Li, Wen-Liang
    Zhang, Jing-Ping
    INORGANIC CHEMISTRY FRONTIERS, 2024, 11 (03) : 947 - 956
  • [40] Recent advances in the surface modification strategies towards 3D carbon-based hosts for dendrite-free Li/Na/Zn metal anodes
    Chen, Chen
    Li, Nian Wu
    Yu, Le
    ENERGYCHEM, 2024, 6 (02)