Impact of Carbonization Temperature on the Structure and Li Deposition Behavior of 3D Dual Metal Carbon Fibers

被引:0
|
作者
Schmidt, Dana [1 ,2 ]
Schoener, Sandro [1 ,2 ]
Steinhoff, Michael K. [1 ,2 ]
Schierholz, Roland [1 ]
Steinhauer, Kevin [1 ]
Thomas Daniel, Davis [1 ]
Speer, Sebastian [1 ,2 ]
Kretzschmar, Ansgar [1 ]
Jeschull, Fabian [3 ]
Windmueller, Anna [1 ]
Tsai, Chih-Long [1 ]
Tempel, Hermann [1 ]
Yu, Shicheng [1 ]
Eichel, Ruediger-A. [1 ,2 ,4 ]
机构
[1] Forschungszentrum Julich, Inst Energy Technol Fundamental Electrochem IET 1, D-52428 Julich, Germany
[2] Rhein Westfal TH Aachen, Mat & Proc Electrochem Energy Storage & Convers, D-52074 Aachen, Germany
[3] Karlsruhe Inst Technol KIT, Inst Appl Mat Energy Storage Syst IAM ESS, D-76344 Eggenstein leopoldshafen, Germany
[4] Forschungszentrum Julich, Inst Energy Mat & Devices, Helmholtz Inst Munster Ion Energy Storage IMD-4 HI, D-48149 Munster, Germany
来源
SMALL STRUCTURES | 2024年
关键词
3D interlayer; carbonization temperature; current collector modification; Li deposition; lithiophilic-lithiophobic gradient; FREE LITHIUM METAL; CURRENT COLLECTOR; ANODE; COPPER; SILVER; CONDUCTIVITY; SPECTROSCOPY;
D O I
10.1002/sstr.202400311
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li deposition within lithiophilic-lithiophobic metal carbon fibers is influenced by several structural factors, including electrical conductivity, surface-bound functional groups, particle size and distribution of the lithiophilic-lithiophobic components, which are significantly affected by the carbonization temperature. To gain a deeper understanding of how these different parameters affect the Li deposition behavior, a detailed analysis of Ag and Cu containing carbon fibers at carbonization temperatures from 500 to 1000 degrees C is performed. At lower carbonization temperatures, the fibers exhibit an unordered carbon structure with a high concentration of heteroatoms and a lithiophilic-lithiophobic gradient. However, the high electrical resistance at these temperatures impedes Li-ion interaction with the fibers, leading to the formation of mossy and dead Li. In contrast, higher carbonization temperatures result in the removal of heteroatoms and a more ordered carbon structure. The agglomeration of Cu and Ag particles at these temperatures disrupts the lithiophilic-lithiophobic gradient, causing concentrated Li deposition on top of the fibers. A threshold temperature of 700 degrees C has been identified for achieving homogeneous Li deposition. At this temperature, the lithiophilic-lithiophobic gradient still exists, and the more ordered carbon structure enhances Li-ion interaction with the fibers, resulting in stable Li deposition for over 1100 h. A detailed investigation of the structural evolution of 3D lithiophilic (Ag)-lithiophobic (Cu) carbon fibers at different carbonization temperatures and the corresponding correlation between the structural features and Li deposition is performed. Particular emphasis is placed on understanding how changes in the carbon structure, along with the size and distribution of the metal particles, influence the Li deposition behavior.image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Bidirectional Lithiophilic Gradients Modification of Ultralight 3D Carbon Nanofiber Host for Stable Lithium Metal Anode
    Li, Tong
    Gu, Sichen
    Chen, Likun
    Zhang, Lihan
    Qin, Xianying
    Huang, Zhijia
    He, Yan-Bing
    Lv, Wei
    Kang, Feiyu
    SMALL, 2022, 18 (33)
  • [22] Honeycomb-like porous 3D nickel electrodeposition for stable Li and Na metal anodes
    Xu, Yaolin
    Menon, Ashok Sreekumar
    Harks, Peter Paul R. M. L.
    Hermes, Dorothee C.
    Haverkate, Lucas A.
    Unnikrishnan, Sandeep
    Mulder, Fokko M.
    ENERGY STORAGE MATERIALS, 2018, 12 : 69 - 78
  • [23] Ion/Electron Redistributed 3D Flexible Host for Achieving Highly Reversible Li Metal Batteries
    Jiang, Huai
    Zhou, Yangen
    Guan, Caohong
    Bai, Maohui
    Qin, Furong
    Yi, Maoyi
    Li, Jie
    Hong, Bo
    Lai, Yanqing
    SMALL, 2022, 18 (29)
  • [24] Structure and electrical transport properties of electrospun carbon nanofibers/carbon nanotubes 3D hierarchical nanocomposites: effect of the CCVD synthesis conditions
    Zambrzycki, Marcel
    Jelen, Piotr
    Fraczek-Szczypta, Aneta
    JOURNAL OF MATERIALS SCIENCE, 2022, 57 (20) : 9334 - 9356
  • [25] 3D spectroscopic measurement of temperature and metal vapor concentration in MIG arc plasma
    Toda K.
    Yoshii K.
    Mimura K.
    Nomura K.
    Hirata Y.
    Asai S.
    Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2018, 36 (01): : 39 - 48
  • [26] Regulating Li deposition behavior at anodic interface induced by SbF3 electrolyte additive in all-solid-state Li metal batteries
    Wang, Aonan
    Yi, Maoyi
    Chang, Shilei
    Shi, Hongbing
    Xiao, Yunlong
    Hu, Yuting
    Zheng, Jingqiang
    Lai, Yanqing
    Wang, Mengran
    Zhang, Zhian
    CHEMICAL ENGINEERING JOURNAL, 2023, 474
  • [27] HKUST-1@IL-Li Solid-state Electrolyte with 3D Ionic Channels and Enhanced Fast Li+ Transport for Lithium Metal Batteries at High Temperature
    Li, Man
    Chen, Tao
    Song, Seunghyun
    Li, Yang
    Bae, Joonho
    NANOMATERIALS, 2021, 11 (03) : 1 - 14
  • [28] Hierarchically Nanoporous 3D Assembly Composed of Functionalized Onion-Like Graphitic Carbon Nanospheres for Anode-Minimized Li Metal Batteries
    Ha, Son
    Hyun, Jong Chan
    Kwak, Jin Hwan
    Lim, Hee-Dae
    Yun, Young Soo
    SMALL, 2020, 16 (39)
  • [29] Dry Spun 3D Woven Carbon Nanotube Anode Electrode for Li-Ion Batteries
    Ryu, Seongwoo
    Kim, Yunkyoung
    Lee, Haeshin
    Hong, Soon Hyung
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2014, 14 (12) : 9152 - 9157
  • [30] 3D stress mapping reveals the origin of lithium-deposition heterogeneity in solid-state lithium-metal batteries
    Hu, Jinhua
    Sun, Zhetao
    Gao, Yirong
    Li, Ping
    Wu, Yifan
    Chen, Shiwei
    Wang, Ruibin
    Li, Nana
    Yang, Wenge
    Shen, Yongxing
    Bo, Shou-Hang
    CELL REPORTS PHYSICAL SCIENCE, 2022, 3 (07):