Impact of Carbonization Temperature on the Structure and Li Deposition Behavior of 3D Dual Metal Carbon Fibers

被引:0
|
作者
Schmidt, Dana [1 ,2 ]
Schoener, Sandro [1 ,2 ]
Steinhoff, Michael K. [1 ,2 ]
Schierholz, Roland [1 ]
Steinhauer, Kevin [1 ]
Thomas Daniel, Davis [1 ]
Speer, Sebastian [1 ,2 ]
Kretzschmar, Ansgar [1 ]
Jeschull, Fabian [3 ]
Windmueller, Anna [1 ]
Tsai, Chih-Long [1 ]
Tempel, Hermann [1 ]
Yu, Shicheng [1 ]
Eichel, Ruediger-A. [1 ,2 ,4 ]
机构
[1] Forschungszentrum Julich, Inst Energy Technol Fundamental Electrochem IET 1, D-52428 Julich, Germany
[2] Rhein Westfal TH Aachen, Mat & Proc Electrochem Energy Storage & Convers, D-52074 Aachen, Germany
[3] Karlsruhe Inst Technol KIT, Inst Appl Mat Energy Storage Syst IAM ESS, D-76344 Eggenstein leopoldshafen, Germany
[4] Forschungszentrum Julich, Inst Energy Mat & Devices, Helmholtz Inst Munster Ion Energy Storage IMD-4 HI, D-48149 Munster, Germany
来源
SMALL STRUCTURES | 2024年
关键词
3D interlayer; carbonization temperature; current collector modification; Li deposition; lithiophilic-lithiophobic gradient; FREE LITHIUM METAL; CURRENT COLLECTOR; ANODE; COPPER; SILVER; CONDUCTIVITY; SPECTROSCOPY;
D O I
10.1002/sstr.202400311
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li deposition within lithiophilic-lithiophobic metal carbon fibers is influenced by several structural factors, including electrical conductivity, surface-bound functional groups, particle size and distribution of the lithiophilic-lithiophobic components, which are significantly affected by the carbonization temperature. To gain a deeper understanding of how these different parameters affect the Li deposition behavior, a detailed analysis of Ag and Cu containing carbon fibers at carbonization temperatures from 500 to 1000 degrees C is performed. At lower carbonization temperatures, the fibers exhibit an unordered carbon structure with a high concentration of heteroatoms and a lithiophilic-lithiophobic gradient. However, the high electrical resistance at these temperatures impedes Li-ion interaction with the fibers, leading to the formation of mossy and dead Li. In contrast, higher carbonization temperatures result in the removal of heteroatoms and a more ordered carbon structure. The agglomeration of Cu and Ag particles at these temperatures disrupts the lithiophilic-lithiophobic gradient, causing concentrated Li deposition on top of the fibers. A threshold temperature of 700 degrees C has been identified for achieving homogeneous Li deposition. At this temperature, the lithiophilic-lithiophobic gradient still exists, and the more ordered carbon structure enhances Li-ion interaction with the fibers, resulting in stable Li deposition for over 1100 h. A detailed investigation of the structural evolution of 3D lithiophilic (Ag)-lithiophobic (Cu) carbon fibers at different carbonization temperatures and the corresponding correlation between the structural features and Li deposition is performed. Particular emphasis is placed on understanding how changes in the carbon structure, along with the size and distribution of the metal particles, influence the Li deposition behavior.image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Regulating alkali metal deposition behavior via Li/Na-philic Ni nanoparticles modified 3D hierarchical carbon skeleton
    Zeng, Wei
    Zhang, Xiaojia
    Yang, Chunyang
    Zhang, Chengzhi
    Shi, Huimin
    Hu, Jin
    Zhao, Yanli
    Zhang, Wenjing
    Zhang, Guanhua
    Duan, Huigao
    CHEMICAL ENGINEERING JOURNAL, 2021, 412
  • [2] The effect of electrical conductivity on lithium metal deposition in 3D carbon nanofiber matrices
    Matsuda, Shoichi
    CARBON, 2019, 154 : 370 - 374
  • [3] A carbon-based 3D current collector with surface protection for Li metal anode
    Ying Zhang
    Boyang Liu
    Emily Hitz
    Wei Luo
    Yonggang Yao
    Yiju Li
    Jiaqi Dai
    Chaoji Chen
    Yanbin Wang
    Chunpeng Yang
    Hongbian Li
    Liangbing Hu
    Nano Research, 2017, 10 : 1356 - 1365
  • [4] A carbon-based 3D current collector with surface protection for Li metal anode
    Zhang, Ying
    Liu, Boyang
    Hitz, Emily
    Luo, Wei
    Yao, Yonggang
    Li, Yiju
    Dai, Jiaqi
    Chen, Chaoji
    Wang, Yanbin
    Yang, Chunpeng
    Li, Hongbian
    Hu, Liangbing
    NANO RESEARCH, 2017, 10 (04) : 1356 - 1365
  • [5] A Lithiophilic 3D Conductive Skeleton for High Performance Li Metal Battery
    Wang, Jun-ru
    Wang, Meng-meng
    He, Xiao-dong
    Wang, Shuo
    Dong, Jie-min
    Chen, Fei
    Yasmin, Aqsa
    Chen, Chun-hua
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (08): : 7265 - 7271
  • [6] Electrospun 3D Structured Carbon Current Collector for Li/S Batteries
    Kalybekkyzy, Sandugash
    Mentbayeva, Almagul
    Yerkinbekova, Yerkezhan
    Baikalov, Nurzhan
    Kahraman, Memet Vezir
    Bakenov, Zhumabay
    NANOMATERIALS, 2020, 10 (04)
  • [7] Deposition behavior study of lithium metal on planar titanium foil and 3D porous titanium
    Fan, Hailin
    Wang, Shuang
    Dong, Jiayu
    Gao, Wenchao
    Liu, Yanxia
    JOURNAL OF POROUS MATERIALS, 2023, 30 (5) : 1653 - 1661
  • [8] 3D Graphene Fibers Grown by Thermal Chemical Vapor Deposition
    Zeng, Jie
    Ji, Xixi
    Ma, Yihui
    Zhang, Zhongxing
    Wang, Shuguang
    Ren, Zhonghua
    Zhi, Chunyi
    Yu, Jie
    ADVANCED MATERIALS, 2018, 30 (12)
  • [9] Stable Li-Metal Deposition via a 3D Nanodiamond Matrix with Ultrahigh Young's Modulus
    Zhang, Weidong
    Fan, Lei
    Tong, Zheming
    Miao, Jiazhi
    Shen, Zeyu
    Li, Siyuan
    Chen, Fang
    Qiu, Yongcai
    Lu, Yingying
    SMALL METHODS, 2019, 3 (11):
  • [10] Lithiophilic 3D scaffold orienteering induced Li uniform deposition for highly stable lithium metal batteries
    Liu, Ying
    Lin, Li
    Sun, Yan
    Zhao, Jianxun
    Liu, Wanqiang
    Wang, Fang
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2024, 192