Towards the Solid-State electrochromic devices: Platform based on transparent and flexible solid polymer electrolyte

被引:1
作者
Xu, Haoming [1 ,2 ]
Haider, Imtiaz [1 ,2 ]
Zheng, Yuhua [1 ,2 ]
Li, Wenli [3 ]
Zhuiykov, Serge [4 ,5 ]
Cui, Yanbin [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Proc Engn, State Key Lab Mesosci & Engn, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon & Adv Semicond Mat, Hangzhou 310058, Peoples R China
[4] Univ Ghent, Global Campus,119-5 Songdomunhwa Ro, Incheon 21985, South Korea
[5] Univ Ghent, Solid State Sci Dept, Krijgslaan 281-S1, B-9000 Ghent, Belgium
关键词
Electrochromic device; Solid-state; Ionic conductivity; Electrochemical window; Solid polymer electrolyte; ENERGY-STORAGE; TEMPERATURE; PERFORMANCE; CONDUCTIVITY;
D O I
10.1016/j.cej.2025.161116
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Flexible electrochromic devices (ECDs) are garnering significant interest as they have potential applications in free-form displays and wearable electronics. Typically, liquid electrolytes were used to prepare ECDs. However, liquid electrolytes are susceptible to leakage, especially when cracks develop during their use. Solid electrolytes can avoid such leakage and use for the assembly of solid-state ECDs. This study aims to create a solid-state ECD with a solid polymer electrolyte (SPE) via a solution casting method. Tungsten trioxide (WO3), lithium bis ((trifluoromethyl)sulfonyl) azide (LiTFSI) and polyvinyl alcohol (PVA) were used as electrochromic (EC) material, ion source and solid-state ion source container, respectively. Furthermore, succinonitrile (SN) and phosphoric acid (H3PO4) were added into PVA/LiTFSI to increase the ionic conductivity, which allowed Li+ to move to the WO3 layer at a faster rate. The resulting SPE exhibited an electrochemical window of 4.0 V, room temperature ionic conductivity of 3.4 x 10-4 S/cm, a glass transition temperature of 38 degrees C, and high mechanical flexibility (500 % strain at a stress of 2 MPa). The assembled solid-state flexible ECDs demonstrated an optical contrast of 41 % at 650 nm, responses of coloration to 49 % in 17 s and bleaching to 90 % in 43 s, coloration efficiency of 70.12 cm2/C and less than 5 % degradation of optical contrast after 1000 cycles. This work presents a simple approach to fabricating flexible and transparent solid-state ECDs without the risk of liquid leakage.
引用
收藏
页数:11
相关论文
共 62 条
[1]   Wafer-Scalable Single-Layer Amorphous Molybdenum Trioxide [J].
Alam, Md Hasibul ;
Chowdhury, Sayema ;
Roy, Anupam ;
Wu, Xiaohan ;
Ge, Ruijing ;
Rodder, Michael A. ;
Chen, Jun ;
Lu, Yang ;
Stern, Chen ;
Houben, Lothar ;
Chrostowski, Robert ;
Burlison, Scott R. ;
Yang, Sung Jin ;
Serna, Martha, I ;
Dodabalapur, Ananth ;
Mangolini, Filippo ;
Naveh, Doron ;
Lee, Jack C. ;
Banerjee, Sanjay K. ;
Warner, Jamie H. ;
Akinwande, Deji .
ACS NANO, 2022, 16 (03) :3756-3767
[2]   Humidity-modulated properties of hydrogel polymer electrolytes for flexible supercapacitors [J].
Anjum, Nasim ;
Joyal, Nathaniel ;
Iroegbu, Justice ;
Li, Dapeng ;
Shen, Caiwei .
JOURNAL OF POWER SOURCES, 2021, 499
[3]   Inkjet-printed all solid-state electrochromic devices based on NiO/WO3 nanoparticle complementary electrodes [J].
Cai, Guofa ;
Darmawan, Peter ;
Cui, Mengqi ;
Chen, Jingwei ;
Wang, Xu ;
Eh, Alice Lee-Sie ;
Magdassi, Shlomo ;
Lee, Pooi See .
NANOSCALE, 2016, 8 (01) :348-357
[4]   Interfacial Issues and Modification of Solid Electrolyte Interphase for Li Metal Anode in Liquid and Solid Electrolytes [J].
Chae, Oh B. ;
Lucht, Brett L. .
ADVANCED ENERGY MATERIALS, 2023, 13 (14)
[5]   Incorporation of plastic crystal and transparent UV-cured polymeric electrolyte in a complementary electrochromic device [J].
Chang, Ting-Hsiang ;
Hu, Chih-Wei ;
Vittal, R. ;
Ho, Kuo-Chuan .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 126 :213-218
[6]   Cationic polymer-in-salt electrolytes for fast metal ion conduction and solid-state battery applications [J].
Chen, Fangfang ;
Wang, Xiaoen ;
Armand, Michel ;
Forsyth, Maria .
NATURE MATERIALS, 2022, 21 (10) :1175-+
[7]   Impact of ionic liquid on lithium ion battery with a solid poly(ionic liquid) pentablock terpolymer as electrolyte and separator [J].
Chen, Tzu-Ling ;
Sun, Rui ;
Willis, Carl ;
Krutzer, Bert ;
Morgan, Brian F. ;
Beyer, Frederick L. ;
Han, Kee Sung ;
Murugesan, Vijayakumar ;
Elabd, Yossef A. .
POLYMER, 2020, 209
[8]   A novel ionically crosslinked gel polymer electrolyte as an ion transport layer for high-performance electrochromic devices [J].
Chen, Wanyu ;
Zhu, Caizhi ;
Guo, Le ;
Yan, MengYing ;
Wu, Lili ;
Zhu, Bo ;
Qi, Chenjie ;
Liu, Siyuan ;
Zhang, Heng ;
Peng, Yong .
JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (13) :3744-3750
[9]   All solid state electrochromic devices based on the LiF electrolyte [J].
Chen, Xi ;
Dou, Shuliang ;
Li, Wenjie ;
Liu, Dongqi ;
Zhang, Yongfu ;
Zhao, Yingming ;
Li, Yao ;
Zhao, Jiupeng ;
Zhang, Xiang .
CHEMICAL COMMUNICATIONS, 2020, 56 (37) :5018-5021
[10]   Ionically Conductive Pastes as Conformable Collector for Transparent, Nonplanar Triboelectric Devices [J].
Chen, Xia-Chao ;
Sun, Peiru ;
Sun, Tianyu ;
Yu, Zhenwei ;
Chen, Fengxiang ;
Chen, Yong ;
Liu, Hongliang .
ADVANCED ELECTRONIC MATERIALS, 2020, 6 (01)