DCE-MRI based deep learning analysis of intratumoral subregion for predicting Ki-67 expression level in breast cancer

被引:1
作者
Ding, Zhimin [1 ]
Zhang, Chengmeng [2 ]
Xia, Cong [3 ]
Yao, Qi [1 ]
Wei, Yi [1 ]
Zhang, Xia [4 ]
Zhao, Nannan [5 ]
Wang, Xiaoming [6 ]
Shi, Suhua [7 ]
机构
[1] Wannan Med Coll, Dept Radiol, Affiliated Hosp 1, 2 Zheshan West Rd, Wuhu 241000, Peoples R China
[2] Huzhou Cent Hosp, Dept Radiol, 1558 Third Ring North Rd, Huzhou 313000, Peoples R China
[3] Jiangsu Canc Hosp, Dept Radiol, 42 Baiziting Rd, Nanjing 210000, Peoples R China
[4] Wannan Med Coll, Dept Med Imaging, Affiliated Hosp 1, 2 Zheshan West Rd, Wuhu 241000, Peoples R China
[5] Bengbu Med Univ, Dept Radiol, Affiliated Hosp 1, 801 Zhihuai Rd, Bengbu 233004, Peoples R China
[6] Wannan Med Coll, Clin Inst, 2 Zheshan West Rd, Wuhu 241000, Peoples R China
[7] Wannan Med Coll, Dept Gynaecol & Obstet, Affiliated Hosp 1, 2 Zheshan West Rd, Wuhu 241000, Peoples R China
关键词
Deep learning; Breast cancer; Subregion; Magnetic resonance imaging; Ki-67; HETEROGENEITY; SUBTYPES;
D O I
10.1016/j.mri.2025.110370
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objective: To evaluate whether deep learning (DL) analysis of intratumor subregion based on dynamic contrastenhanced MRI (DCE-MRI) can help predict Ki-67 expression level in breast cancer. Materials and methods: A total of 290 breast cancer patients from two hospitals were retrospectively collected. A k-means clustering algorithm confirmed subregions of tumor. DL features of whole tumor and subregions were extracted from DCE-MRI images based on 3D ResNet18 pre-trained model. The logistic regression model was constructed after dimension reduction. Model performance was assessed using the area under the curve (AUC), and clinical value was demonstrated through decision curve analysis (DCA). Results: The k-means clustering method clustered the tumor into two subregions (habitat 1 and habitat 2) based on voxel values. Both the habitat 1 model (validation set: AUC = 0.771, 95 %CI: 0.642-0.900 and external test set: AUC = 0.794, 95 %CI: 0.696-0.891) and the habitat 2 model (AUC = 0.734, 95 %CI: 0.605-0.862 and AUC = 0.756, 95 %CI: 0.646-0.866) showed better predictive capabilities for Ki-67 expression level than the whole tumor model (AUC = 0.686, 95 %CI: 0.550-0.823 and AUC = 0.680, 95 %CI: 0.555-0.804). The combined model based on the two subregions further enhanced the predictive capability (AUC = 0.808, 95 %CI: 0.696-0.921 and AUC = 0.842, 95 %CI: 0.758-0.926), and it demonstrated higher clinical value than other models in DCA. Conclusions: The deep learning model derived from subregion of tumor showed better performance for predicting Ki-67 expression level in breast cancer patients. Additionally, the model that integrated two subregions further enhanced the predictive performance.
引用
收藏
页数:12
相关论文
共 37 条
[1]   Association of Peritumoral Radiomics With Tumor Biology and Pathologic Response to Preoperative Targeted Therapy for HER2 (ERBB2)-Positive Breast Cancer [J].
Braman, Nathaniel ;
Prasanna, Prateek ;
Whitney, Jon ;
Singh, Salendra ;
Beig, Niha ;
Etesami, Maryam ;
Bates, David D. B. ;
Gallagher, Katherine ;
Bloch, B. Nicolas ;
Vulchi, Manasa ;
Turk, Paulette ;
Bera, Kaustav ;
Abraham, Jame ;
Sikov, William M. ;
Somlo, George ;
Harris, Lyndsay N. ;
Gilmore, Hannah ;
Plecha, Donna ;
Varadan, Vinay ;
Madabhushi, Anant .
JAMA NETWORK OPEN, 2019, 2 (04)
[2]   The role of MRI in predicting Ki-67 in breast cancer: preliminary results from a prospective study [J].
Caiazzo, Corrado ;
Di Micco, Rosa ;
Esposito, Emanuela ;
Sollazzo, Viviana ;
Cervotti, Maria ;
Varelli, Carlo ;
Forestieri, Pietro ;
Limite, Gennaro .
TUMORI JOURNAL, 2018, 104 (06) :438-443
[3]   Imaging Phenotypes of Breast Cancer Heterogeneity in Preoperative Breast Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) Scans Predict 10-Year Recurrence [J].
Chitalia, Rhea D. ;
Rowland, Jennifer ;
McDonald, Elizabeth S. ;
Pantalone, Lauren ;
Cohen, Eric A. ;
Gastounioti, Aimilia ;
Feldman, Michael ;
Schnall, Mitchell ;
Conant, Emily ;
Kontos, Despina .
CLINICAL CANCER RESEARCH, 2020, 26 (04) :862-869
[4]   REGIONAL HETEROGENEITY IN THE PROLIFERATIVE ACTIVITY OF HUMAN GLIOMAS AS MEASURED BY THE KI-67 LABELING INDEX [J].
COONS, SW ;
JOHNSON, PC .
JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 1993, 52 (06) :609-618
[5]   Ki-67 as a Prognostic Biomarker in Invasive Breast Cancer [J].
Davey, Matthew G. ;
Hynes, Sean O. ;
Kerin, Michael J. ;
Miller, Nicola ;
Lowery, Aoife J. .
CANCERS, 2021, 13 (17)
[6]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[7]   Radiomic analysis of imaging heterogeneity in tumours and the surrounding parenchyma based on unsupervised decomposition of DCE-MRI for predicting molecular subtypes of breast cancer [J].
Fan, Ming ;
Zhang, Peng ;
Wang, Yue ;
Peng, Weijun ;
Wang, Shiwei ;
Gao, Xin ;
Xu, Maosheng ;
Li, Lihua .
EUROPEAN RADIOLOGY, 2019, 29 (08) :4456-4467
[8]   DCE-MRI texture analysis with tumor subregion partitioning for predicting Ki-67 status of estrogen receptor-positive breast cancers [J].
Fan, Ming ;
Cheng, Hu ;
Zhang, Peng ;
Gao, Xin ;
Zhang, Juan ;
Shao, Guoliang ;
Li, Lihua .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 48 (01) :237-247
[9]   Perfusion MR Imaging of Breast Cancer: Insights Using "Habitat Imaging" [J].
Gillies, Robert J. ;
Balagurunathan, Yoganand .
RADIOLOGY, 2018, 288 (01) :36-37
[10]   Strategies for subtypes-dealing with the diversity of breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011 [J].
Goldhirsch, A. ;
Wood, W. C. ;
Coates, A. S. ;
Gelber, R. D. ;
Thuerlimann, B. ;
Senn, H. -J. .
ANNALS OF ONCOLOGY, 2011, 22 (08) :1736-1747