Predicting the risk of relapsed or refractory in patients with diffuse large B-cell lymphoma via deep learning

被引:0
作者
Ma, Dongshen [1 ]
Yuan, Yuqing [1 ]
Miao, Xiaodan [1 ]
Gu, Ying [1 ]
Wang, Yubo [1 ]
Luo, Dan [1 ]
Fan, Meiting [1 ]
Shi, Xiaoli [2 ]
Xi, Shuxue [2 ]
Ji, Binbin [2 ]
Xiang, Chenxi [1 ]
Liu, Hui [1 ,3 ]
机构
[1] Xuzhou Med Univ, Affiliated Hosp, Dept Pathol, Xuzhou, Peoples R China
[2] Geneis Beijing Co Ltd, Dept Sci, Beijing, Peoples R China
[3] Xuzhou Med Univ, Dept Pathol, Xuzhou, Peoples R China
关键词
diffuse large B-cell lymphoma; histopathological images; clinical features; relapsed or refractory; deep learning; NON-HODGKIN-LYMPHOMA; PHASE-II; RITUXIMAB; TRANSPLANTATION; CLASSIFICATION; SURVIVAL; COMBINATION; PROGRESSION; OFATUMUMAB; LEUKEMIA;
D O I
10.3389/fonc.2025.1480645
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Introduction Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma (NHL) in humans, and it is a highly heterogeneous malignancy with a 40% to 50% risk of relapsed or refractory (R/R), leading to a poor prognosis. So early prediction of R/R risk is of great significance for adjusting treatments and improving the prognosis of patients.Methods We collected clinical information and H&E images of 227 patients diagnosed with DLBCL in Xuzhou Medical University Affiliated Hospital from 2015 to 2018. Patients were then divided into R/R group and non-relapsed & non-refractory group based on clinical diagnosis, and the two groups were randomly assigned to the training set, validation set and test set in a ratio of 7:1:2. We developed a model to predict the R/R risk of patients based on clinical features utilizing the random forest algorithm. Additionally, a prediction model based on histopathological images was constructed using CLAM, a weakly supervised learning method after extracting image features with convolutional networks. To improve the prediction performance, we further integrated image features and clinical information for fusion modeling.Results The average area under the ROC curve value of the fusion model was 0.71 +/- 0.07 in the validation dataset and 0.70 +/- 0.04 in the test dataset. This study proposed a novel method for predicting the R/R risk of DLBCL based on H&E images and clinical features.Discussion For patients predicted to have high risk, follow-up monitoring can be intensified, and treatment plans can be adjusted promptly.
引用
收藏
页数:13
相关论文
共 54 条
[1]   Artificial intelligence as the next step towards precision pathology [J].
Acs, B. ;
Rantalainen, M. ;
Hartman, J. .
JOURNAL OF INTERNAL MEDICINE, 2020, 288 (01) :62-81
[2]   Joint Region and Nucleus Segmentation for Characterization of Tumor Infiltrating Lymphocytes in Breast Cancer [J].
Amgad, Mohamed ;
Sarkar, Anindya ;
Srinivas, Chukka ;
Redman, Rachel ;
Ratra, Simrath ;
Bechert, Charles J. ;
Calhoun, Benjamin C. ;
Mrazeck, Karen ;
Kurkure, Uday ;
Cooper, Lee A. D. ;
Barnes, Michael .
MEDICAL IMAGING 2019: DIGITAL PATHOLOGY, 2019, 10956
[3]   Defining primary refractory large B-cell lymphoma [J].
Bock, Allison M. ;
Mwangi, Raphael ;
Wang, Yucai ;
Khurana, Arushi ;
Maurer, Matthew J. ;
Ayers, Amy ;
Kahl, Brad S. ;
Martin, Peter ;
Cohen, Jonathon B. ;
Casulo, Carla ;
Lossos, Izidore S. ;
Farooq, Umar ;
Ayyappan, Sabarish ;
Reicks, Tanner ;
Habermann, Thomas M. ;
Witzig, Thomas E. ;
Flowers, Christopher R. ;
Cerhan, James R. ;
Nastoupil, Loretta J. ;
Nowakowski, Grzegorz S. .
BLOOD ADVANCES, 2024, 8 (13) :3402-3415
[4]   Recent advances and clinical applications of deep learning in medical image analysis [J].
Chen, Xuxin ;
Wang, Ximin ;
Zhang, Ke ;
Fung, Kar-Ming ;
Thai, Theresa C. ;
Moore, Kathleen ;
Mannel, Robert S. ;
Liu, Hong ;
Zheng, Bin ;
Qiu, Yuchen .
MEDICAL IMAGE ANALYSIS, 2022, 79
[5]   Revised response criteria for malignant lymphoma [J].
Cheson, Bruce D. ;
Pfistner, Beate ;
Juweid, Malik E. ;
Gascoyne, Randy D. ;
Specht, Lena ;
Horning, Sandra J. ;
Coiffier, Bertrand ;
Fisher, Richard I. ;
Hagenbeek, Anton ;
Zucca, Emanuele ;
Rosen, Steven T. ;
Stroobants, Sigrid ;
Lister, T. Andrew ;
Hoppe, Richard T. ;
Dreyling, Martin ;
Tobinai, Kensei ;
Vose, Julie M. ;
Connors, Joseph M. ;
Federico, Massimo ;
Diehl, Volker .
JOURNAL OF CLINICAL ONCOLOGY, 2007, 25 (05) :579-586
[6]   A multicentre, phase II trial of ofatumumab monotherapy in relapsed/progressive diffuse large B-cell lymphoma [J].
Coiffier, Bertrand ;
Radford, John ;
Bosly, Andre ;
Martinelli, Giovanni ;
Barca, Gabriela ;
Davies, Andrew ;
Decaudin, Didier ;
Gallop-Evans, Eve ;
Padmanabhan-Iyer, Swaminathan ;
Van Eygen, Koen ;
Wu, Ka Lung ;
Gupta, Ira V. ;
Lin, Thomas S. ;
Goldstein, Nancy ;
Jewell, Roxanne C. ;
Winter, Paul ;
Lisby, Steen .
BRITISH JOURNAL OF HAEMATOLOGY, 2013, 163 (03) :334-342
[7]   Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study [J].
Crump, Michael ;
Neelapu, Sattva S. ;
Farooq, Umar ;
Van den Neste, Eric ;
Kuruvilla, John ;
Westin, Jason ;
Link, Brian K. ;
Hay, Annette ;
Cerhan, James R. ;
Zhu, Liting ;
Boussetta, Sami ;
Feng, Lei ;
Maurer, Matthew J. ;
Navale, Lynn ;
Wiezorek, Jeff ;
Go, William Y. ;
Gisselbrecht, Christian .
BLOOD, 2017, 130 (16) :1800-1808
[8]   Cell of origin is not associated with outcomes of relapsed or refractory diffuse large B cell lymphoma [J].
Desai, Sanjal H. ;
Mwangi, Raphael ;
Smith, Alexandra N. ;
Maurer, Matthew J. ;
Farooq, Umar ;
King, Rebecca L. ;
Cerhan, James R. ;
Feldman, Andrew L. ;
Habermann, Thomas M. ;
Thompson, Carrie A. ;
Wang, Yucai ;
Ansell, Stephen M. ;
Witzig, Thomas E. ;
Nowakowski, Grzegorz S. .
HEMATOLOGICAL ONCOLOGY, 2023, 41 (01) :39-49
[9]   A machine learning approach in a monocentric cohort for predicting primary refractory disease in Diffuse Large B-cell lymphoma patients [J].
Detrait, Marie Y. ;
Warnon, Stephanie ;
Lagasse, Raphael ;
Dumont, Laurent ;
De Prophetis, Stephanie ;
Hansenne, Amandine ;
Raedemaeker, Juliette ;
Robin, Valerie ;
Verstraete, Geraldine ;
Gillain, Aline ;
Depasse, Nicolas ;
Jacmin, Pierre ;
Pranger, Delphine .
PLOS ONE, 2024, 19 (10)
[10]  
Deyiaene M, 2019, IEEE ENG MED BIO, P2580, DOI [10.1109/EMBC.2019.8856582, 10.1109/embc.2019.8856582]