On electromagnetic perturbations of geodesic acoustic modes in anisotropic tokamak plasmas

被引:0
作者
Chen, Zhe [1 ,2 ]
Ren, Haijun [1 ,2 ,3 ]
Wang, Hao [4 ]
Roach, Colin [3 ]
机构
[1] Univ Sci & Technol China, CAS, Key Lab Geospace Environm, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Sch Phys Sci, Dept Engn & Appl Phys, Hefei 230026, Anhui, Peoples R China
[3] Culham Ctr Fus Energy, Abingdon OX14 3DB, England
[4] Natl Inst Fus Sci, Toki 5095292, Japan
基金
中国国家自然科学基金;
关键词
geodesic acoustic mode; electromagnetic perturbation; anisotropy; equilibrium condition; INSTABILITIES; EXPLANATION; TURBULENCE; TRANSPORT; EQUATIONS;
D O I
10.1088/1361-6587/adb886
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Electromagnetic geodesic acoustic modes are analytically investigated in tokamak plasmas with anisotropy, utilizing gyro-kinetic equations and a rigorously self-consistent anisotropic distribution. When including first-order finite-orbit-width effects and first-order finite-Larmor-radius effects, it is proven that the anisotropy with an arbitrary strength does not induce the m=+/- 1 harmonics of A & Vert;, where m and A & Vert; denote the poloidal wavenumber and the parallel component of the perturbed magnetic vector potential, respectively. The rigorously self-consistent anisotropy introduces an equilibrium electrostatic field with poloidally asymmetric structure, and consequently induces an additional E -> xB -> drift term within the gyro-kinetic equation. This equilibrium electrostatic field inhibits the anisotropy from generating non-zero m=+/- 1 harmonics of A & Vert;. Indeed we demonstrate that introducing anisotropy self-consistently into the equilibrium quantitatively influences m=+/- 1,+/- 2 harmonics of the perturbed electrostatic potential, but only the m=+/- 2 harmonics of A & Vert;.
引用
收藏
页数:9
相关论文
共 50 条
[11]   Energetic-particle-induced electromagnetic geodesic acoustic mode in tokamak plasmas [J].
Wang, Lingfeng ;
Dong, J. Q. ;
He, Zhixiong ;
He, Hongda ;
Shen, Y. .
PHYSICS OF PLASMAS, 2014, 21 (07)
[12]   Electromagnetic characteristics of geodesic acoustic mode in the COMPASS tokamak [J].
Seidl, J. ;
Krbec, J. ;
Hron, M. ;
Adamek, J. ;
Hidalgo, C. ;
Markovic, T. ;
Melnikov, A. V. ;
Stockel, J. ;
Weinzettl, V. ;
Aftanas, M. ;
Bilkova, P. ;
Bogar, O. ;
Bohm, P. ;
Eliseev, L. G. ;
Hacek, P. ;
Havlicek, J. ;
Horacek, J. ;
Imrisek, M. ;
Kovarik, K. ;
Mitosinkova, K. ;
Panek, R. ;
Tomes, M. ;
Vondracek, P. .
NUCLEAR FUSION, 2017, 57 (12)
[13]   Regions of kinetic geodesic acoustic modes and streamers in JIPPT-IIU tokamak plasmas [J].
Hamada, Y. ;
Watari, T. ;
Nishizawa, A. ;
Yamagishi, O. ;
Narihara, K. ;
Kawasumi, Y. ;
Ido, T. ;
Kojima, M. ;
Toi, K. .
NUCLEAR FUSION, 2012, 52 (06)
[14]   The magnetic component of geodesic acoustic modes in tokamak plasmas with a radial equilibrium electric field [J].
Zhou, Deng .
PHYSICS OF PLASMAS, 2016, 23 (10)
[16]   Dynamics of kinetic geodesic-acoustic modes and the radial electric field in tokamak neoclassical plasmas [J].
Xu, X. Q. ;
Belli, E. ;
Bodi, K. ;
Candy, J. ;
Chang, C. S. ;
Cohen, R. H. ;
Colella, P. ;
Dimits, A. M. ;
Dorr, M. R. ;
Gao, Z. ;
Hittinger, J. A. ;
Ko, S. ;
Krasheninnikov, S. ;
McKee, G. R. ;
Nevins, W. M. ;
Rognlien, T. D. ;
Snyder, P. B. ;
Suh, J. ;
Umansky, M. V. .
NUCLEAR FUSION, 2009, 49 (06)
[17]   Electron collisionless damping of the geodesic acoustic mode in rotating tokamak plasmas [J].
Xie, Baoyi ;
Guo, Wenfeng ;
Gong, Xueyu ;
Yu, Jun ;
Chen, You ;
Cao, Jinjia .
NUCLEAR FUSION, 2016, 56 (12)
[18]   Impurity effect on geodesic acoustic mode in toroidally rotating tokamak plasmas [J].
Xie, Baoyi ;
Guo, Wenfeng ;
Xiang, Nong .
PLASMA PHYSICS AND CONTROLLED FUSION, 2018, 60 (02)
[19]   Geodesic acoustic modes in a fluid model of tokamak plasma: the effects of finite beta and collisionality [J].
Singh, Rameswar ;
Storelli, A. ;
Guercan, Oe D. ;
Hennequin, P. ;
Vermare, L. ;
Morel, P. ;
Singh, R. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2015, 57 (12)
[20]   Drift effects on electromagnetic geodesic acoustic modes [J].
Sgalla, R. J. F. .
PHYSICS OF PLASMAS, 2015, 22 (02)