Finite Groups with Given Systems of Generalized Subnormal and Generalized Sylow Permutable Subgroups

被引:0
作者
Guo, Wenbin [1 ]
Liu, A. -Ming [1 ]
Safonov, V. G. [2 ,3 ]
Skiba, A. N. [4 ]
机构
[1] Hainan Univ, Sch Math & Stat, Haikou 570228, Peoples R China
[2] Natl Acad Sci Belarus, Inst Math, Minsk 220072, BELARUS
[3] Belarusian State Univ, Dept Mech & Math, Minsk 220030, BELARUS
[4] Francisk Skorina Gomel State Univ, Dept Math & Technol Programming, Gomel 246019, BELARUS
基金
中国国家自然科学基金;
关键词
Finite group; a-Soluble group; a-Nilpotent group; PaT-Group; a-Sub- normal subgroup; a-Permutable subgroup;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Throughout this paper, all groups are finite and G always denotes a finite group; L(G) is the lattice of all subgroups of G; sigma={sigma(i)|i is an element of I} is some partition of the set of all primes. A subgroup A of G is said to be: (i)sigma-subnormal in G if there is a subgroup chain A=A(0)<= A(1)<= <middle dot> <middle dot> <middle dot> <= A(n)=G such that either A(i-1)(sic)A(i) or A(i)/(A(i-1))A(i) is sigma-primary for all i= 1, . . . , n;(ii)sigma-permutableinGifGis sigma-full, that is, G has a Hall sigma i-subgroup for every sigma(i)is an element of sigma(G) and A permutes with all such Hall subgroups of G. In this review we discuss some new results on finite groups with given systems sigma-subnormal and sigma-permutable subgroups. In particular, we discuss groups inwhich sigma-permutability is a transitive relation in the group.
引用
收藏
页码:675 / 699
页数:25
相关论文
共 71 条
[1]   A new characterization of finite σ-soluble PσT-groups [J].
Adarchenko, N. M. .
ALGEBRA AND DISCRETE MATHEMATICS, 2020, 29 (01) :33-41
[2]   GENERALIZED CENTER AND HYPER-CENTER OF A FINITE-GROUP [J].
AGRAWAL, RK .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 58 (JUL) :13-21
[3]   FINITE-GROUPS WHOSE SUBNORMAL SUBGROUPS PERMUTE WITH ALL SYLOW SUBGROUPS [J].
AGRAWAL, RK .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 47 (01) :77-83
[4]   On finite groups with σ-subnormal Schmidt subgroups [J].
Al-Sharo, Khaled A. ;
Skiba, Alexander N. .
COMMUNICATIONS IN ALGEBRA, 2017, 45 (10) :4158-4165
[5]   On finite minimal non-nilpotent groups [J].
Ballester-Bolinches, A ;
Esteban-Romero, R ;
Robinson, DJS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (12) :3455-3462
[6]   Groups in which Sylow subgroups and subnormal subgroups permute [J].
Ballester-Bolinches, A ;
Beidleman, JC ;
Heineken, H .
ILLINOIS JOURNAL OF MATHEMATICS, 2003, 47 (1-2) :63-69
[7]  
Ballester-Bolinches A., 2006, Classes of finite groups, Mathematics and its Applications
[8]   On two classes of generalised finite T-groups [J].
Ballester-Bolinches, Adolfo ;
Pedraza-Aguilera, M. Carmen ;
Perez-Calabuig, Vicent .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (03)
[9]  
Boliches A.Ballester., 2010, Products of Finite Groups
[10]   FINITE GROUPS WHOSE MINIMAL SUBGROUPS ARE NORMAL [J].
BUCKLEY, J .
MATHEMATISCHE ZEITSCHRIFT, 1970, 116 (01) :15-&