DFA: Decoupling Feature Alignment for Unsupervised Domain Adaptation

被引:0
|
作者
Wen, Zhongyi [1 ]
Li, Qiang [1 ,2 ]
Wang, Yatong [3 ]
Xu, Luyan [2 ]
Shao, Huaizong [1 ,2 ]
Sun, Guomin [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
[2] Lab Electromagnet Space Cognit & Intelligent Contr, Beijing 100089, Peoples R China
[3] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 20期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Adaptation models; Training; Task analysis; Internet of Things; Data models; Neural networks; Deep learning; Data decoupling (DD); feature alignment; independent and identically distributed (i.i.d.) assumption; multidimensional alignment (MDA); unsupervised domain adaptation (UDA);
D O I
10.1109/JIOT.2024.3423794
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A prevailing assumption in existing deep learning research posits that data across source and target domains adhere to the independent and identically distributed (i.i.d.) assumption. However, this assumption often proves inadequate in real-world scenarios, leading to significant performance degradation when models encounter data with divergent distributions. To address this challenge, a novel unsupervised domain adaptation (UDA) algorithm, decoupling feature alignment (DFA), is introduced. The approach begins with the establishment of a robust theoretical framework, serving as the foundation for the mean-covariance adjustment feature alignment (MCAFA) algorithm. Simultaneously, a data decoupling (DD) module is introduced, effectively segregating target domain data into two subsets: one that mirrors the source domain and another that diverges markedly. Furthermore, a multidimensional alignment module is employed, leveraging the MCAFA algorithm and the DD module to align target data with source data across various layers and categories. Comprehensive evaluations on multiple data sets underscore the superiority of DFA.
引用
收藏
页码:33151 / 33163
页数:13
相关论文
共 50 条
  • [1] Joint Clustering and Discriminative Feature Alignment for Unsupervised Domain Adaptation
    Deng, Wanxia
    Liao, Qing
    Zhao, Lingjun
    Guo, Deke
    Kuang, Gangyao
    Hu, Dewen
    Liu, Li
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 7842 - 7855
  • [2] MultiDIAL: Domain Alignment Layers for (Multisource) Unsupervised Domain Adaptation
    Carlucci, Fabio Maria
    Porzi, Lorenzo
    Caputo, Barbara
    Ricci, Elisa
    Bulo, Samuel Rota
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (12) : 4441 - 4452
  • [3] Transferable Feature Selection for Unsupervised Domain Adaptation
    Yan, Yuguang
    Wu, Hanrui
    Ye, Yuzhong
    Bi, Chaoyang
    Lu, Min
    Liu, Dapeng
    Wu, Qingyao
    Ng, Michael K.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (11) : 5536 - 5551
  • [4] Informative Feature Disentanglement for Unsupervised Domain Adaptation
    Deng, Wanxia
    Zhao, Lingjun
    Liao, Qing
    Guo, Deke
    Kuang, Gangyao
    Hu, Dewen
    Pietikainen, Matti
    Liu, Li
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 2407 - 2421
  • [5] Unsupervised Domain Adaptation by Statistics Alignment for Deep Sleep Staging Networks
    Fan, Jiahao
    Zhu, Hangyu
    Jiang, Xinyu
    Meng, Long
    Chen, Chen
    Fu, Cong
    Yu, Huan
    Dai, Chenyun
    Chen, Wei
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2022, 30 : 205 - 216
  • [6] Contradistinguisher: A Vapnik's Imperative to Unsupervised Domain Adaptation
    Balgi, Sourabh
    Dukkipati, Ambedkar
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (09) : 4730 - 4747
  • [7] Discriminative Invariant Alignment for Unsupervised Domain Adaptation
    Lu, Yuwu
    Li, Desheng
    Wang, Wenjing
    Lai, Zhihui
    Zhou, Jie
    Li, Xuelong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 1871 - 1882
  • [8] Unsupervised Domain Adaptation With Class-Aware Memory Alignment
    Wang, Hui
    Zheng, Liangli
    Zhao, Hanbin
    Li, Shijian
    Li, Xi
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (07) : 9930 - 9942
  • [9] TransVQA: Transferable Vector Quantization Alignment for Unsupervised Domain Adaptation
    Sun, Yulin
    Dong, Weisheng
    Li, Xin
    Dong, Le
    Shi, Guangming
    Xie, Xuemei
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 856 - 866
  • [10] Context-Aware Sim-to-Real Unsupervised Domain Adaptation for Lane Detection via Disentangled Feature Alignment
    Chae, Yeon Jeong
    Byun, Ji Sun
    Lee, Yun Hak
    Lee, Jae Yun
    Han, Sang Hoon
    Jeon, Joo Hyeon
    Cho, Sung In
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2025, 22 : 14593 - 14609