The molecular mechanism of temperature-dependent phase separation of heat shock factor 1

被引:1
|
作者
Ren, Qiunan [1 ]
Li, Linge [2 ,3 ]
Liu, Lei [1 ]
Li, Juan [1 ]
Shi, Chaowei [2 ]
Sun, Yujie [4 ,5 ,6 ]
Yao, Xuebiao [1 ,2 ]
Hou, Zhonghuai [2 ,3 ]
Xiang, Shengqi [1 ]
机构
[1] Univ Sci & Technol China, Sch Life Sci, MOE Key Lab Cellular Dynam, Hefei, Peoples R China
[2] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Hefei, Peoples R China
[3] Univ Sci & Technol China, Dept Chem Phys, Hefei, Peoples R China
[4] Peking Univ, Coll Future Technol, Natl Biomed Imaging Ctr, Beijing, Peoples R China
[5] Peking Univ, State Key Lab Membrane Biol, Sch Life Sci, Beijing, Peoples R China
[6] Peking Univ, Biomed Pioneering Innovat Ctr BIOP, Sch Life Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
DISORDERED PROTEINS; HSF1; STRESS; BEHAVIOR; TRANSITION; CHROMATIN; PROGRAM; ROLES;
D O I
10.1038/s41589-024-01806-y
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Heat shock factor 1 (HSF1) is the critical orchestrator of cell responses to heat shock, and its dysfunction is linked to various diseases. HSF1 undergoes phase separation upon heat shock, and its activity is regulated by post-translational modifications (PTMs). The molecular details underlying HSF1 phase separation, temperature sensing and PTM regulation remain poorly understood. Here, we discovered that HSF1 exhibits temperature-dependent phase separation with a lower critical solution temperature behavior, providing a new conceptual mechanism accounting for HSF1 activation. We revealed the residue-level molecular details of the interactions driving the phase separation of wild-type HSF1 and its distinct PTM patterns at various temperatures. The mapped interfaces were validated experimentally and accounted for the reported HSF1 functions. Importantly, the molecular grammar of temperature-dependent HSF1 phase separation is species specific and physiologically relevant. These findings delineate a chemical code that integrates accurate phase separation with physiological body temperature control in animals.
引用
收藏
页码:831 / 842
页数:29
相关论文
共 50 条
  • [41] Study of Imidazolium Ionic Liquids: Temperature-dependent Fluorescence and Molecular Dynamics Simulation
    Fu Hai-ying
    Zhu Guang-lai
    Wu Guo-zhong
    Sha Mao-lin
    Dou Qiang
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2011, 27 (04) : 688 - 692
  • [42] The Temperature-Dependent Phase Transformation and Microstructural Characterisation in In-Sn Solder Alloys
    Zhou, Jiye
    Tan, Xin Fu
    Gu, Qinfen
    McDonald, Stuart D.
    Nogita, Kazuhiro
    JOM, 2023, 75 (08) : 3149 - 3161
  • [43] Temperature-dependent photoemission on 1T-TiSe2: Interpretation within the exciton condensate phase model
    Monney, C.
    Schwier, E. F.
    Garnier, M. G.
    Mariotti, N.
    Didiot, C.
    Beck, H.
    Aebi, P.
    Cercellier, H.
    Marcus, J.
    Battaglia, C.
    Berger, H.
    Titov, A. N.
    PHYSICAL REVIEW B, 2010, 81 (15):
  • [44] The thermal shock resistance prediction of porous ceramic sandwich structures with temperature-dependent material properties
    Li, Z.
    Wang, K. F.
    Wang, B. L.
    Guo, S. L.
    CERAMICS INTERNATIONAL, 2019, 45 (03) : 4043 - 4052
  • [45] Heat transfer characteristics of energy piles considering temperature-dependent soil thermal conductivity
    Xi, Wang
    Zhao, Yong
    Feng, Shijin
    Fang, Jincheng
    Chen, Hongxin
    Sun, Wan
    COMPUTERS AND GEOTECHNICS, 2024, 172
  • [46] Improved lumped models for transient heat conduction in a slab with temperature-dependent thermal conductivity
    Su, Ge
    Tan, Zheng
    Su, Jian
    APPLIED MATHEMATICAL MODELLING, 2009, 33 (01) : 274 - 283
  • [47] Determination of Temperature-Dependent Heat Conductivity and Thermal Diffusivity of Waste Glass Melter Feed
    Pokorny, Richard
    Rice, Jarrett A.
    Schweiger, Michael J.
    Hrma, Pavel
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2013, 96 (06) : 1891 - 1898
  • [48] Size effect on the effective thermal shock strength of porous ceramics with temperature-dependent material properties
    Li, Z.
    Wang, K. F.
    Li, J. E.
    Wang, B. L.
    CERAMICS INTERNATIONAL, 2020, 46 (10) : 14919 - 14930
  • [49] Temperature-dependent mechanical properties and the microscopic deformation mechanism of bilayer γ-graphdiyne under tension
    Song, Bo
    Yang, Bolin
    Zhang, Cun
    Wang, Chao
    Chen, Shaohua
    NANOTECHNOLOGY, 2023, 34 (01)
  • [50] Influences of temperature-dependent thermal conductivity on surface heat flow near major faults
    So, Byung-Dal
    Yuen, David A.
    GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (15) : 3868 - 3872