Joint Phase-Noise and Channel Estimation in mmWave Massive MIMO Systems With Hybrid Structures Using Nested Tensor Decomposition

被引:0
|
作者
Zheng, Kang [1 ,2 ]
Gu, Zhihao [1 ]
Xia, Xinjiang [3 ]
Zhang, Zhaotao [4 ]
Wang, Dongming [1 ,3 ]
Zhu, Pengcheng [1 ,3 ]
机构
[1] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[2] China Mobile Zijin Innovat Inst, Nanjing 211899, Peoples R China
[3] Purple Mt Labs, Nanjing 21111, Peoples R China
[4] Nanjing R&D Ctr Broadband Wireless Commun, Nanjing 211111, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Radio frequency; Millimeter wave communication; Tensors; Channel estimation; Matrix decomposition; Estimation; Mobile communication; Hybrid structure; mmWave massive MIMO; nested-tensor decomposition; phase noise; channel estimation; OFDM; UNIQUENESS;
D O I
10.1109/TVT.2024.3446847
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper focuses on the phase-noise (PN) and channel estimation for mmWave massive MIMO systems with hybrid analog-digital structures. By considering the PN caused by the impairment of radio frequency (RF) chains, we construct the training signal as a nested CANDECOMP/PARAFAC (CP) model. After separating PN and compressed channel (inner tensor) through CP decomposition (CPD) of outer tensor, we further explore the Vandermonde structure of the factor matrix in inner tensor and propose Tensor-Train-Vandermonde-Structure-CPD (TTVSCPD) to estimate mmWave channel parameters. The simulation results verify that the accuracy and robustness of proposed algorithm are superior to traditional methods.
引用
收藏
页码:19890 / 19895
页数:6
相关论文
共 50 条
  • [41] Deep Learning Compressed Sensing-Based Beamspace Channel Estimation in mmWave Massive MIMO Systems
    Tong, Weiqiang
    Xu, Wenjun
    Wang, Fengyu
    Shang, Jin
    Pan, Miao
    Lin, Jiaru
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2022, 11 (09) : 1935 - 1939
  • [42] Training based DOA Estimation in Hybrid MmWave Massive MIMO Systems
    Fan, Dian
    Deng, Yansha
    Gao, Feifei
    Liu, Yuanwei
    Wang, Gongpu
    Zhong, Zhangdui
    Nallanathan, Arumugam
    GLOBECOM 2017 - 2017 IEEE GLOBAL COMMUNICATIONS CONFERENCE, 2017,
  • [43] Tensor Dictionary Manifold Learning for Channel Estimation and Interference Elimination of Multi-User Millimeter-Wave Massive MIMO Systems
    Zhou, Xiaoping
    Liu, Haichao
    Wang, Bin
    Huang, Jifeng
    Wang, Yang
    IEEE ACCESS, 2022, 10 : 5343 - 5358
  • [44] Channel estimation and pilot reduction for mmWave massive MIMO systems using deep neural networks
    Tamiru, Biniam
    Jee, Jeongju
    Park, Hyuncheol
    ICT EXPRESS, 2024, 10 (04): : 798 - 803
  • [45] CNN-based Channel Estimation using NOMA for mmWave Massive MIMO System
    Anu, T. S.
    Raveendran, Tara
    2023 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP, SSP, 2023, : 349 - 353
  • [46] DEEP CNN FOR WIDEBAND MMWAVE MASSIVE MIMO CHANNEL ESTIMATION USING FREQUENCY CORRELATION
    Dong, Peihao
    Zhang, Hua
    Li, Geoffrey Ye
    NaderiAlizadeh, Navid
    Gaspar, Ivan Simoes
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 4529 - 4533
  • [47] Channel Estimation Using Joint Dictionary Learning in FDD Massive MIMO Systems
    Ding, Yacong
    Rao, Bhaskar D.
    2015 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2015, : 185 - 189
  • [48] Framework on Deep Learning-Based Joint Hybrid Processing for mmWave Massive MIMO Systems
    Dong, Peihao
    Zhang, Hua
    Li, Geoffrey Ye
    IEEE ACCESS, 2020, 8 : 106023 - 106035
  • [49] Channel Estimation for Movable-Antenna MIMO Systems via Tensor Decomposition
    Zhang, Ruoyu
    Cheng, Lei
    Zhang, Wei
    Guan, Xinrong
    Cai, Yueming
    Wu, Wen
    Zhang, Rui
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (11) : 3089 - 3093
  • [50] NBNet-Based Channel Estimation for Beamspace mmWave Massive MIMO Systems
    Li, Jun
    Zhang, Xuyi
    Jiang, Xinyan
    Zheng, Wenjing
    He, Bo
    Cui, Endong
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING, ICDSP 2024, 2024, : 77 - 82