Joint Phase-Noise and Channel Estimation in mmWave Massive MIMO Systems With Hybrid Structures Using Nested Tensor Decomposition

被引:0
|
作者
Zheng, Kang [1 ,2 ]
Gu, Zhihao [1 ]
Xia, Xinjiang [3 ]
Zhang, Zhaotao [4 ]
Wang, Dongming [1 ,3 ]
Zhu, Pengcheng [1 ,3 ]
机构
[1] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[2] China Mobile Zijin Innovat Inst, Nanjing 211899, Peoples R China
[3] Purple Mt Labs, Nanjing 21111, Peoples R China
[4] Nanjing R&D Ctr Broadband Wireless Commun, Nanjing 211111, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Radio frequency; Millimeter wave communication; Tensors; Channel estimation; Matrix decomposition; Estimation; Mobile communication; Hybrid structure; mmWave massive MIMO; nested-tensor decomposition; phase noise; channel estimation; OFDM; UNIQUENESS;
D O I
10.1109/TVT.2024.3446847
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper focuses on the phase-noise (PN) and channel estimation for mmWave massive MIMO systems with hybrid analog-digital structures. By considering the PN caused by the impairment of radio frequency (RF) chains, we construct the training signal as a nested CANDECOMP/PARAFAC (CP) model. After separating PN and compressed channel (inner tensor) through CP decomposition (CPD) of outer tensor, we further explore the Vandermonde structure of the factor matrix in inner tensor and propose Tensor-Train-Vandermonde-Structure-CPD (TTVSCPD) to estimate mmWave channel parameters. The simulation results verify that the accuracy and robustness of proposed algorithm are superior to traditional methods.
引用
收藏
页码:19890 / 19895
页数:6
相关论文
共 50 条
  • [31] Beamspace Channel Estimation for Massive MIMO mmWave Systems: Algorithm and VLSI Design
    Mirfarshbafan, Seyed Hadi
    Gallyas-Sanhueza, Alexandra
    Ghods, Ramina
    Studer, Christoph
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2020, 67 (12) : 5482 - 5495
  • [32] GRIDLESS CHANNEL ESTIMATION FOR MMWAVE HYBRID MASSIVE MIMO SYSTEMS WITH LOW-RESOLUTION ADCS
    Kim, In-Soo
    Choi, Junil
    2021 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2021, : 351 - 355
  • [33] Distributed Channel Estimation Algorithm for mmWave Massive MIMO Communication Systems
    Zuo, Chenyu
    Deng, Haoge
    Zhang, Jiyan
    Qi, Yuan
    2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,
  • [34] AAT model based channel estimation for mmWave massive MIMO systems
    Yu S.
    Liu R.
    Zhang Y.
    Xie N.
    Huang L.
    Tongxin Xuebao/Journal on Communications, 2024, 45 (03): : 41 - 49
  • [35] Low Complexity Channel Estimation for mmWave Hybrid MIMO Systems
    Molazadeh, Amirhossein
    Ghasimi, Mohsen
    Alizade, Pezhman
    Ardebilipour, Mehrdad
    2020 28TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2020, : 461 - 465
  • [36] Channel Estimation for Hybrid mmWave MIMO Systems With CFO Uncertainties
    Rodriguez-Fernandez, Javier
    Gonzalez-Prelcic, Nuria
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2019, 18 (10) : 4636 - 4652
  • [37] Low-Complexity Joint Channel Estimation for Multi-User mmWave Massive MIMO Systems
    Du, Jianhe
    Li, Jiaqi
    He, Jing
    Guan, Yalin
    Lin, Heyun
    ELECTRONICS, 2020, 9 (02)
  • [38] Improved Hierarchical Codebook-Based Channel Estimation for mmWave Massive MIMO Systems
    Yoon, Sung-Geun
    Lee, Seung Joon
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2022, 11 (10) : 2095 - 2099
  • [39] Tensor-Based Low-Complexity Channel Estimation for mmWave Massive MIMO-OTFS Systems
    Wu X.
    Ma S.
    Yang X.
    Journal of Communications and Information Networks, 2020, 5 (03) : 324 - 334
  • [40] Quantum mechanics denoising based channel estimation algorithm for mmWave massive MIMO systems
    Jing, Xiaoli
    Wang, Xianpeng
    Han, Zhiguang
    Su, Ting
    Shao, Chenglong
    Lan, Xiang
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2024, 361 (03): : 1140 - 1154