Joint Phase-Noise and Channel Estimation in mmWave Massive MIMO Systems With Hybrid Structures Using Nested Tensor Decomposition

被引:0
|
作者
Zheng, Kang [1 ,2 ]
Gu, Zhihao [1 ]
Xia, Xinjiang [3 ]
Zhang, Zhaotao [4 ]
Wang, Dongming [1 ,3 ]
Zhu, Pengcheng [1 ,3 ]
机构
[1] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[2] China Mobile Zijin Innovat Inst, Nanjing 211899, Peoples R China
[3] Purple Mt Labs, Nanjing 21111, Peoples R China
[4] Nanjing R&D Ctr Broadband Wireless Commun, Nanjing 211111, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Radio frequency; Millimeter wave communication; Tensors; Channel estimation; Matrix decomposition; Estimation; Mobile communication; Hybrid structure; mmWave massive MIMO; nested-tensor decomposition; phase noise; channel estimation; OFDM; UNIQUENESS;
D O I
10.1109/TVT.2024.3446847
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper focuses on the phase-noise (PN) and channel estimation for mmWave massive MIMO systems with hybrid analog-digital structures. By considering the PN caused by the impairment of radio frequency (RF) chains, we construct the training signal as a nested CANDECOMP/PARAFAC (CP) model. After separating PN and compressed channel (inner tensor) through CP decomposition (CPD) of outer tensor, we further explore the Vandermonde structure of the factor matrix in inner tensor and propose Tensor-Train-Vandermonde-Structure-CPD (TTVSCPD) to estimate mmWave channel parameters. The simulation results verify that the accuracy and robustness of proposed algorithm are superior to traditional methods.
引用
收藏
页码:19890 / 19895
页数:6
相关论文
共 50 条
  • [1] Tensor-Based Receiver for Joint Channel, Data, and Phase-Noise Estimation in MIMO-OFDM Systems
    Sokal, Bruno
    Gomes, Paulo R. B.
    Almeida, Andre L. F. de
    Haardt, Martin
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2021, 15 (03) : 803 - 815
  • [2] Tensor Decomposition-Based Channel Estimation for Hybrid mmWave Massive MIMO in High-Mobility Scenarios
    Zhang, Ruoyu
    Cheng, Lei
    Wang, Shuai
    Lou, Yi
    Wu, Wen
    Ng, Derrick Wing Kwan
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (09) : 6325 - 6340
  • [3] Tensor-Based Joint Channel Estimation and Symbol Detection for Time-Varying mmWave Massive MIMO Systems
    Du, Jianhe
    Han, Meng
    Chen, Yuanzhi
    Jin, Libiao
    Gao, Feifei
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 6251 - 6266
  • [4] Channel Parameter Estimation and Location Sensing in mmWave Systems Under Phase Noise via Nested PARAFAC Analysis
    Han, Meng
    Du, Jianhe
    Chen, Yuanzhi
    Jin, Libiao
    Gao, Feifei
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 5422 - 5438
  • [5] Tensor-Based Joint Channel Estimation for Multi-Way Massive MIMO Hybrid Relay Systems
    Du, Jianhe
    Ye, Siyu
    Jin, Libiao
    Li, Xingwang
    Ngo, Hien Quoc
    Dobre, Octavia A.
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (09) : 9571 - 9585
  • [6] Simultaneous Channel Estimation and Localization of Terahertz Massive MIMO Systems via Bayesian Tensor Decomposition
    Du, Jianhe
    Dong, Jingyi
    Gao, Feifei
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (02) : 541 - 545
  • [7] Joint Channel and Location Estimation of Massive MIMO System With Phase Noise
    Zheng, Xuanyu
    Liu, An
    Lau, Vincent
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 2598 - 2612
  • [8] Constrained Tensor Decomposition-Based Hybrid Beamforming for Mmwave Massive MIMO-OFDM Communication Systems
    Zilli, Guilherme
    Zhu, Wei-Ping
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (06) : 5775 - 5788
  • [9] Channel Estimation via Subcarrier Grouping for Wideband mmWave Hybrid Massive MIMO-OFDM Systems
    Li, Yang
    Hu, Anzhong
    IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, 2024, 8 (01): : 64 - 78
  • [10] An ESPRIT-Based Supervised Channel Estimation Method Using Tensor Train Decomposition for mmWave 3-D MIMO-OFDM Systems
    Gong, Xiao
    Chen, Wei
    Sun, Lei
    Chen, Jie
    Ai, Bo
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 555 - 570