Unsupervised mapping of rice paddy fields and their inundation patterns using Sentinel-1 SAR images and GIS

被引:0
|
作者
McGiven, Lauren E. [1 ]
Mueller, Marc F. [1 ,2 ]
机构
[1] Univ Notre Dame, Dept Civil & Environm Engn & Earth Sci, Notre Dame, IN 46556 USA
[2] Swiss Fed Inst Aquat Sci & Technol, Eawag, Dept Syst Anal Integrated Assessment & Modelling, Dubendorf, Switzerland
基金
美国国家科学基金会;
关键词
SAR; rice paddy detection; temporal mapping; unsupervised classification; Sentinel-1; flooding; LANDSAT; 8; OLI; TIME-SERIES; PLANTING AREA; WATER;
D O I
10.1080/22797254.2025.2484711
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The periodic flooding of rice paddies presents significant environmental challenges, including methane emissions, fertilizer pollution, and water resource stress. This study introduces a scalable approach using high-resolution (10 m) Sentinel-1 SAR imagery and Global Surface Water Extent rasters to map rice paddies and their flooding patterns. Temporal variations in SAR backscatter are condensed into a custom multi-band image for each planting season, enabling unsupervised classification to delineate rice paddies and flooding patches. This approach achieves high detection accuracy, with overall accuracy rates for paddy detection of 83.8%-89.0% in Japan, 71.5%-83.5% in the Philippines, and 72.3% for rice flooding patches in Bali, Indonesia. Unlike most existing methods, our approach does not rely on ancillary data or context-specific information for training or labeling, making it scalable and adaptable across diverse geographies. We explore this potential by examining the method's underlying assumptions and identifying areas where these assumptions may be challenged.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Spatio-Temporal Estimation of Rice Height Using Time Series Sentinel-1 Images
    Yang, Huijin
    Li, Heping
    Wang, Wei
    Li, Ning
    Zhao, Jianhui
    Pan, Bin
    REMOTE SENSING, 2022, 14 (03)
  • [32] Small- and medium-sized rice fields identification in hilly areas using all available sentinel-1/2 images
    Wang, Lihua
    Ma, Hao
    Gao, Yanghua
    Chen, Shengbo
    Yang, Songling
    Lu, Peng
    Fan, Li
    Wang, Yumiao
    PLANT METHODS, 2024, 20 (01)
  • [33] Rice Mapping Using a BiLSTM-Attention Model from Multitemporal Sentinel-1 Data
    Sun, Chunling
    Zhang, Hong
    Xu, Lu
    Wang, Chao
    Li, Liutong
    AGRICULTURE-BASEL, 2021, 11 (10):
  • [34] Paddy Rice Mapping in Thailand Using Time-Series Sentinel-1 Data and Deep Learning Model
    Xu, Lu
    Zhang, Hong
    Wang, Chao
    Wei, Sisi
    Zhang, Bo
    Wu, Fan
    Tang, Yixian
    REMOTE SENSING, 2021, 13 (19)
  • [35] PADDY FIELD MAPPING IN EASTERN PART OF ASIA USING SENTINEL-1 AND SENTINEL-2
    Inoue, Shimpei
    Ito, Akihiko
    Yonezawa, Chinatsu
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 5171 - 5174
  • [36] Satellite-Based Flood Mapping through Bayesian Inference from a Sentinel-1 SAR Datacube
    Bauer-Marschallinger, Bernhard
    Cao, Senmao
    Tupas, Mark Edwin
    Roth, Florian
    Navacchi, Claudio
    Melzer, Thomas
    Freeman, Vahid
    Wagner, Wolfgang
    REMOTE SENSING, 2022, 14 (15)
  • [37] Automated rice mapping using multitemporal Sentinel-1 SAR imagery using dynamic threshold and slope-based index methods
    Hegde, A. Aishwarya
    Umesh, Pruthviraj
    Tahiliani, Mohit P.
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2025, 37
  • [38] Exploring the Potential of Mapping Cropping Patterns on Smallholder Scale Croplands Using Sentinel-1 SAR Data
    Juliana Useya
    Shengbo Chen
    Chinese Geographical Science, 2019, 29 : 626 - 639
  • [39] High-Resolution Mapping of Paddy Rice Extent and Growth Stages across Peninsular Malaysia Using a Fusion of Sentinel-1 and 2 Time Series Data in Google Earth Engine
    Fatchurrachman
    Rudiyanto
    Soh, Norhidayah Che
    Shah, Ramisah Mohd
    Giap, Sunny Goh Eng
    Setiawan, Budi Indra
    Minasny, Budiman
    REMOTE SENSING, 2022, 14 (08)
  • [40] A change detection approach to flood inundation mapping using multi-temporal Sentinel-1 SAR images, the Brahmaputra River, Assam (India): 2015–2020
    Darshil Vekaria
    Shard Chander
    R P Singh
    Sudhanshu Dixit
    Journal of Earth System Science, 132