Unsupervised mapping of rice paddy fields and their inundation patterns using Sentinel-1 SAR images and GIS

被引:0
|
作者
McGiven, Lauren E. [1 ]
Mueller, Marc F. [1 ,2 ]
机构
[1] Univ Notre Dame, Dept Civil & Environm Engn & Earth Sci, Notre Dame, IN 46556 USA
[2] Swiss Fed Inst Aquat Sci & Technol, Eawag, Dept Syst Anal Integrated Assessment & Modelling, Dubendorf, Switzerland
基金
美国国家科学基金会;
关键词
SAR; rice paddy detection; temporal mapping; unsupervised classification; Sentinel-1; flooding; LANDSAT; 8; OLI; TIME-SERIES; PLANTING AREA; WATER;
D O I
10.1080/22797254.2025.2484711
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The periodic flooding of rice paddies presents significant environmental challenges, including methane emissions, fertilizer pollution, and water resource stress. This study introduces a scalable approach using high-resolution (10 m) Sentinel-1 SAR imagery and Global Surface Water Extent rasters to map rice paddies and their flooding patterns. Temporal variations in SAR backscatter are condensed into a custom multi-band image for each planting season, enabling unsupervised classification to delineate rice paddies and flooding patches. This approach achieves high detection accuracy, with overall accuracy rates for paddy detection of 83.8%-89.0% in Japan, 71.5%-83.5% in the Philippines, and 72.3% for rice flooding patches in Bali, Indonesia. Unlike most existing methods, our approach does not rely on ancillary data or context-specific information for training or labeling, making it scalable and adaptable across diverse geographies. We explore this potential by examining the method's underlying assumptions and identifying areas where these assumptions may be challenged.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] An Approach to High-Resolution Rice Paddy Mapping Using Time-Series Sentinel-1 SAR Data in the Mun River Basin, Thailand
    Li, He
    Fu, Dongjie
    Huang, Chong
    Su, Fenzhen
    Liu, Qingsheng
    Liu, Gaohuan
    Wu, Shangrong
    REMOTE SENSING, 2020, 12 (23) : 1 - 19
  • [32] Paddy Rice Mapping in Thailand Using Time-Series Sentinel-1 Data and Deep Learning Model
    Xu, Lu
    Zhang, Hong
    Wang, Chao
    Wei, Sisi
    Zhang, Bo
    Wu, Fan
    Tang, Yixian
    REMOTE SENSING, 2021, 13 (19)
  • [33] Sentinel-1 Dual-Polarization SAR Images Despeckling Network Based on Unsupervised Learning
    Li, Jie
    Lin, Liupeng
    He, Mange
    He, Jiang
    Yuan, Qiangqiang
    Shen, Huanfeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 15
  • [34] PADDY FIELD MAPPING IN EASTERN PART OF ASIA USING SENTINEL-1 AND SENTINEL-2
    Inoue, Shimpei
    Ito, Akihiko
    Yonezawa, Chinatsu
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 5171 - 5174
  • [35] Exploring the Potential of Mapping Cropping Patterns on Smallholder Scale Croplands Using Sentinel-1 SAR Data
    Useya, Juliana
    Chen Shengbo
    CHINESE GEOGRAPHICAL SCIENCE, 2019, 29 (04) : 626 - 639
  • [36] Exploring the Potential of Mapping Cropping Patterns on Smallholder Scale Croplands Using Sentinel-1 SAR Data
    Juliana USEYA
    CHEN Shengbo
    Chinese Geographical Science, 2019, (04) : 626 - 639
  • [37] Exploring Sentinel-1 and Sentinel-2 diversity for flood inundation mapping using deep learning
    Konapala, Goutam
    Kumar, Sujay, V
    Ahmad, Shahryar Khalique
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 180 : 163 - 173
  • [38] A change detection approach to flood inundation mapping using multi-temporal Sentinel-1 SAR images, the Brahmaputra River, Assam (India): 2015–2020
    Darshil Vekaria
    Shard Chander
    R P Singh
    Sudhanshu Dixit
    Journal of Earth System Science, 132
  • [39] Exploring the Potential of Mapping Cropping Patterns on Smallholder Scale Croplands Using Sentinel-1 SAR Data
    Juliana Useya
    Shengbo Chen
    Chinese Geographical Science, 2019, 29 : 626 - 639
  • [40] Exploring the Potential of Mapping Cropping Patterns on Smallholder Scale Croplands Using Sentinel-1 SAR Data
    Juliana USEYA
    CHEN Shengbo
    Chinese Geographical Science, 2019, 29 (04) : 626 - 639