Unsupervised mapping of rice paddy fields and their inundation patterns using Sentinel-1 SAR images and GIS

被引:0
|
作者
McGiven, Lauren E. [1 ]
Mueller, Marc F. [1 ,2 ]
机构
[1] Univ Notre Dame, Dept Civil & Environm Engn & Earth Sci, Notre Dame, IN 46556 USA
[2] Swiss Fed Inst Aquat Sci & Technol, Eawag, Dept Syst Anal Integrated Assessment & Modelling, Dubendorf, Switzerland
基金
美国国家科学基金会;
关键词
SAR; rice paddy detection; temporal mapping; unsupervised classification; Sentinel-1; flooding; LANDSAT; 8; OLI; TIME-SERIES; PLANTING AREA; WATER;
D O I
10.1080/22797254.2025.2484711
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The periodic flooding of rice paddies presents significant environmental challenges, including methane emissions, fertilizer pollution, and water resource stress. This study introduces a scalable approach using high-resolution (10 m) Sentinel-1 SAR imagery and Global Surface Water Extent rasters to map rice paddies and their flooding patterns. Temporal variations in SAR backscatter are condensed into a custom multi-band image for each planting season, enabling unsupervised classification to delineate rice paddies and flooding patches. This approach achieves high detection accuracy, with overall accuracy rates for paddy detection of 83.8%-89.0% in Japan, 71.5%-83.5% in the Philippines, and 72.3% for rice flooding patches in Bali, Indonesia. Unlike most existing methods, our approach does not rely on ancillary data or context-specific information for training or labeling, making it scalable and adaptable across diverse geographies. We explore this potential by examining the method's underlying assumptions and identifying areas where these assumptions may be challenged.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Exploring Sentinel-1 and Sentinel-2 diversity for flood inundation mapping using deep learning
    Konapala, Goutam
    Kumar, Sujay, V
    Ahmad, Shahryar Khalique
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 180 : 163 - 173
  • [22] A systematic method for spatio-temporal phenology estimation of paddy rice using time series Sentinel-1 images
    Yang, Huijin
    Pan, Bin
    Li, Ning
    Wang, Wei
    Zhang, Jian
    Zhang, Xianlong
    REMOTE SENSING OF ENVIRONMENT, 2021, 259 (259)
  • [23] Fast Mapping of Large-Scale Landslides in Sentinel-1 SAR Images Using SPAUNet
    Shi, Xianjian
    Wu, Yifei
    Guo, Qing
    Li, Ni
    Lin, Zhiyong
    Qiu, Hua
    Pan, Bin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 7992 - 8006
  • [24] REMOTE SENSING FOR FLOOD INUNDATION MAPPING USING VARIOUS PROCESSING METHODS WITH SENTINEL-1 AND SENTINEL-2
    Stoyanova, E.
    39TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT ISRSE-39 FROM HUMAN NEEDS TO SDGS, VOL. 48-M-1, 2023, : 339 - 346
  • [25] Rapid flood inundation mapping and impact assessment using Sentinel-1 SAR data over Ghaggar River basin of Punjab, India
    Arora, Mohit
    Sahoo, Sashikanta
    Bhatt, Chandra Mohan
    Litoria, Pradeep Kumar
    Pateriya, Brijendra
    JOURNAL OF EARTH SYSTEM SCIENCE, 2023, 132 (04)
  • [26] Freshwater lake inundation monitoring using Sentinel-1 SAR imagery in Eastern Uganda
    Barasa, Bernard
    Wanyama, Joshua
    ANNALS OF GIS, 2020, 26 (02) : 191 - 200
  • [27] Classification of Paddy Rice Planting Area Through Feature Selection Method Using Sentinel-1/2 Time Series Images
    Zhang, Shiyu
    Li, Pengao
    Xie, Yong
    Shao, Wen
    Tian, Xueru
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 8747 - 8762
  • [28] Detection of Frozen Soil Using Sentinel-1 SAR Data
    Baghdadi, Nicolas
    Bazzi, Hassan
    El Hajj, Mohammad
    Zribi, Mehrez
    REMOTE SENSING, 2018, 10 (08):
  • [29] Operational Flood Mapping Using Multi-Temporal Sentinel-1 SAR Images: A Case Study from Bangladesh
    Uddin, Kabir
    Matin, Mir A.
    Meyer, Franz J.
    REMOTE SENSING, 2019, 11 (13)
  • [30] RAPESEED FIELDS MAPPING USING SENTINEL-1 TIME SERIES
    Baghdadi, Nicolas
    Maleki, Saeideh
    Dantas, Cassio Fraga
    Najem, Sami
    Bazzi, Hassan
    Ienco, Dino
    Zribi, Mehrez
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 4836 - 4840